![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellimits | Structured version Visualization version GIF version |
Description: Membership in the class of all limit ordinals. (Contributed by Scott Fenton, 11-Apr-2012.) |
Ref | Expression |
---|---|
ellimits.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ellimits | ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-limits 31967 | . . 3 ⊢ Limits = ((On ∩ Fix Bigcup ) ∖ {∅}) | |
2 | 1 | eleq2i 2693 | . 2 ⊢ (𝐴 ∈ Limits ↔ 𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅})) |
3 | eldif 3584 | . 2 ⊢ (𝐴 ∈ ((On ∩ Fix Bigcup ) ∖ {∅}) ↔ (𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅})) | |
4 | 3anan32 1050 | . . 3 ⊢ ((Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) ↔ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) ∧ 𝐴 ≠ ∅)) | |
5 | df-lim 5728 | . . 3 ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) | |
6 | elin 3796 | . . . . 5 ⊢ (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup )) | |
7 | ellimits.1 | . . . . . . 7 ⊢ 𝐴 ∈ V | |
8 | 7 | elon 5732 | . . . . . 6 ⊢ (𝐴 ∈ On ↔ Ord 𝐴) |
9 | 7 | elfix 32010 | . . . . . . 7 ⊢ (𝐴 ∈ Fix Bigcup ↔ 𝐴 Bigcup 𝐴) |
10 | 7 | brbigcup 32005 | . . . . . . 7 ⊢ (𝐴 Bigcup 𝐴 ↔ ∪ 𝐴 = 𝐴) |
11 | eqcom 2629 | . . . . . . 7 ⊢ (∪ 𝐴 = 𝐴 ↔ 𝐴 = ∪ 𝐴) | |
12 | 9, 10, 11 | 3bitri 286 | . . . . . 6 ⊢ (𝐴 ∈ Fix Bigcup ↔ 𝐴 = ∪ 𝐴) |
13 | 8, 12 | anbi12i 733 | . . . . 5 ⊢ ((𝐴 ∈ On ∧ 𝐴 ∈ Fix Bigcup ) ↔ (Ord 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
14 | 6, 13 | bitri 264 | . . . 4 ⊢ (𝐴 ∈ (On ∩ Fix Bigcup ) ↔ (Ord 𝐴 ∧ 𝐴 = ∪ 𝐴)) |
15 | 7 | elsn 4192 | . . . . 5 ⊢ (𝐴 ∈ {∅} ↔ 𝐴 = ∅) |
16 | 15 | necon3bbii 2841 | . . . 4 ⊢ (¬ 𝐴 ∈ {∅} ↔ 𝐴 ≠ ∅) |
17 | 14, 16 | anbi12i 733 | . . 3 ⊢ ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ ((Ord 𝐴 ∧ 𝐴 = ∪ 𝐴) ∧ 𝐴 ≠ ∅)) |
18 | 4, 5, 17 | 3bitr4ri 293 | . 2 ⊢ ((𝐴 ∈ (On ∩ Fix Bigcup ) ∧ ¬ 𝐴 ∈ {∅}) ↔ Lim 𝐴) |
19 | 2, 3, 18 | 3bitri 286 | 1 ⊢ (𝐴 ∈ Limits ↔ Lim 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 384 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 Vcvv 3200 ∖ cdif 3571 ∩ cin 3573 ∅c0 3915 {csn 4177 ∪ cuni 4436 class class class wbr 4653 Ord word 5722 Oncon0 5723 Lim wlim 5724 Bigcup cbigcup 31941 Fix cfix 31942 Limits climits 31943 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-symdif 3844 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ord 5726 df-on 5727 df-lim 5728 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fo 5894 df-fv 5896 df-1st 7168 df-2nd 7169 df-txp 31961 df-bigcup 31965 df-fix 31966 df-limits 31967 |
This theorem is referenced by: dfom5b 32019 dfrdg4 32058 |
Copyright terms: Public domain | W3C validator |