MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  limuni2 Structured version   Visualization version   GIF version

Theorem limuni2 5786
Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.)
Assertion
Ref Expression
limuni2 (Lim 𝐴 → Lim 𝐴)

Proof of Theorem limuni2
StepHypRef Expression
1 limuni 5785 . . 3 (Lim 𝐴𝐴 = 𝐴)
2 limeq 5735 . . 3 (𝐴 = 𝐴 → (Lim 𝐴 ↔ Lim 𝐴))
31, 2syl 17 . 2 (Lim 𝐴 → (Lim 𝐴 ↔ Lim 𝐴))
43ibi 256 1 (Lim 𝐴 → Lim 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483   cuni 4436  Lim wlim 5724
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-in 3581  df-ss 3588  df-uni 4437  df-tr 4753  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-ord 5726  df-lim 5728
This theorem is referenced by:  rankxplim2  8743  rankxplim3  8744
  Copyright terms: Public domain W3C validator