![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > limuni2 | Structured version Visualization version GIF version |
Description: The union of a limit ordinal is a limit ordinal. (Contributed by NM, 19-Sep-2006.) |
Ref | Expression |
---|---|
limuni2 | ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | limuni 5785 | . . 3 ⊢ (Lim 𝐴 → 𝐴 = ∪ 𝐴) | |
2 | limeq 5735 | . . 3 ⊢ (𝐴 = ∪ 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) | |
3 | 1, 2 | syl 17 | . 2 ⊢ (Lim 𝐴 → (Lim 𝐴 ↔ Lim ∪ 𝐴)) |
4 | 3 | ibi 256 | 1 ⊢ (Lim 𝐴 → Lim ∪ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1483 ∪ cuni 4436 Lim wlim 5724 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-in 3581 df-ss 3588 df-uni 4437 df-tr 4753 df-po 5035 df-so 5036 df-fr 5073 df-we 5075 df-ord 5726 df-lim 5728 |
This theorem is referenced by: rankxplim2 8743 rankxplim3 8744 |
Copyright terms: Public domain | W3C validator |