| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-lim | Structured version Visualization version GIF version | ||
| Description: Define the limit ordinal predicate, which is true for a nonempty ordinal that is not a successor (i.e. that is the union of itself). Our definition combines the definition of Lim of [BellMachover] p. 471 and Exercise 1 of [TakeutiZaring] p. 42. See dflim2 5781, dflim3 7047, and dflim4 for alternate definitions. (Contributed by NM, 22-Apr-1994.) |
| Ref | Expression |
|---|---|
| df-lim | ⊢ (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cA | . . 3 class 𝐴 | |
| 2 | 1 | wlim 5724 | . 2 wff Lim 𝐴 |
| 3 | 1 | word 5722 | . . 3 wff Ord 𝐴 |
| 4 | c0 3915 | . . . 4 class ∅ | |
| 5 | 1, 4 | wne 2794 | . . 3 wff 𝐴 ≠ ∅ |
| 6 | 1 | cuni 4436 | . . . 4 class ∪ 𝐴 |
| 7 | 1, 6 | wceq 1483 | . . 3 wff 𝐴 = ∪ 𝐴 |
| 8 | 3, 5, 7 | w3a 1037 | . 2 wff (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴) |
| 9 | 2, 8 | wb 196 | 1 wff (Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 ≠ ∅ ∧ 𝐴 = ∪ 𝐴)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: limeq 5735 dflim2 5781 limord 5784 limuni 5785 unizlim 5844 limon 7036 dflim3 7047 nnsuc 7082 onfununi 7438 dfrdg2 31701 ellimits 32017 onsucuni3 33215 |
| Copyright terms: Public domain | W3C validator |