![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > linindsi | Structured version Visualization version GIF version |
Description: The implications of being a linearly independent subset. (Contributed by AV, 13-Apr-2019.) (Revised by AV, 30-Jul-2019.) |
Ref | Expression |
---|---|
islininds.b | ⊢ 𝐵 = (Base‘𝑀) |
islininds.z | ⊢ 𝑍 = (0g‘𝑀) |
islininds.r | ⊢ 𝑅 = (Scalar‘𝑀) |
islininds.e | ⊢ 𝐸 = (Base‘𝑅) |
islininds.0 | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
linindsi | ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | linindsv 42234 | . . 3 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ V ∧ 𝑀 ∈ V)) | |
2 | islininds.b | . . . 4 ⊢ 𝐵 = (Base‘𝑀) | |
3 | islininds.z | . . . 4 ⊢ 𝑍 = (0g‘𝑀) | |
4 | islininds.r | . . . 4 ⊢ 𝑅 = (Scalar‘𝑀) | |
5 | islininds.e | . . . 4 ⊢ 𝐸 = (Base‘𝑅) | |
6 | islininds.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
7 | 2, 3, 4, 5, 6 | islininds 42235 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑀 ∈ V) → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
8 | 1, 7 | syl 17 | . 2 ⊢ (𝑆 linIndS 𝑀 → (𝑆 linIndS 𝑀 ↔ (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 )))) |
9 | 8 | ibi 256 | 1 ⊢ (𝑆 linIndS 𝑀 → (𝑆 ∈ 𝒫 𝐵 ∧ ∀𝑓 ∈ (𝐸 ↑𝑚 𝑆)((𝑓 finSupp 0 ∧ (𝑓( linC ‘𝑀)𝑆) = 𝑍) → ∀𝑥 ∈ 𝑆 (𝑓‘𝑥) = 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 Vcvv 3200 𝒫 cpw 4158 class class class wbr 4653 ‘cfv 5888 (class class class)co 6650 ↑𝑚 cmap 7857 finSupp cfsupp 8275 Basecbs 15857 Scalarcsca 15944 0gc0g 16100 linC clinc 42193 linIndS clininds 42229 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-iota 5851 df-fv 5896 df-ov 6653 df-lininds 42231 |
This theorem is referenced by: linindslinci 42237 linindscl 42240 |
Copyright terms: Public domain | W3C validator |