![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mndomgmid | Structured version Visualization version GIF version |
Description: A monoid is a magma with an identity element. (Contributed by FL, 18-Feb-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mndomgmid | ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mndoismgmOLD 33669 | . 2 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ Magma) | |
2 | mndoisexid 33668 | . 2 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ ExId ) | |
3 | 1, 2 | elind 3798 | 1 ⊢ (𝐺 ∈ MndOp → 𝐺 ∈ (Magma ∩ ExId )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 1990 ∩ cin 3573 ExId cexid 33643 Magmacmagm 33647 MndOpcmndo 33665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-sgrOLD 33660 df-mndo 33666 |
This theorem is referenced by: ismndo2 33673 rngoidmlem 33735 isdrngo2 33757 |
Copyright terms: Public domain | W3C validator |