| Step | Hyp | Ref
| Expression |
| 1 | | isdivrng1.1 |
. . 3
⊢ 𝐺 = (1st ‘𝑅) |
| 2 | | isdivrng1.2 |
. . 3
⊢ 𝐻 = (2nd ‘𝑅) |
| 3 | | isdivrng1.3 |
. . 3
⊢ 𝑍 = (GId‘𝐺) |
| 4 | | isdivrng1.4 |
. . 3
⊢ 𝑋 = ran 𝐺 |
| 5 | 1, 2, 3, 4 | isdrngo1 33755 |
. 2
⊢ (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp)) |
| 6 | | isdivrng2.5 |
. . . . . . 7
⊢ 𝑈 = (GId‘𝐻) |
| 7 | 1, 2, 4, 3, 6 | dvrunz 33753 |
. . . . . 6
⊢ (𝑅 ∈ DivRingOps → 𝑈 ≠ 𝑍) |
| 8 | 5, 7 | sylbir 225 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈 ≠ 𝑍) |
| 9 | | grporndm 27364 |
. . . . . . . . . . . 12
⊢ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
| 10 | 9 | adantl 482 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
| 11 | | difss 3737 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑋 ∖ {𝑍}) ⊆ 𝑋 |
| 12 | | xpss12 5225 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑋 ∖ {𝑍}) ⊆ 𝑋 ∧ (𝑋 ∖ {𝑍}) ⊆ 𝑋) → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋)) |
| 13 | 11, 11, 12 | mp2an 708 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋) |
| 14 | 1, 2, 4 | rngosm 33699 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ RingOps → 𝐻:(𝑋 × 𝑋)⟶𝑋) |
| 15 | | fdm 6051 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐻:(𝑋 × 𝑋)⟶𝑋 → dom 𝐻 = (𝑋 × 𝑋)) |
| 16 | 14, 15 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝑅 ∈ RingOps → dom 𝐻 = (𝑋 × 𝑋)) |
| 17 | 13, 16 | syl5sseqr 3654 |
. . . . . . . . . . . . . . 15
⊢ (𝑅 ∈ RingOps → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻) |
| 18 | 17 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻) |
| 19 | | ssdmres 5420 |
. . . . . . . . . . . . . 14
⊢ (((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ dom 𝐻 ↔ dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
| 20 | 18, 19 | sylib 208 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
| 21 | 20 | dmeqd 5326 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = dom ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
| 22 | | dmxpid 5345 |
. . . . . . . . . . . 12
⊢ dom
((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) = (𝑋 ∖ {𝑍}) |
| 23 | 21, 22 | syl6eq 2672 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → dom dom (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍})) |
| 24 | 10, 23 | eqtrd 2656 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍})) |
| 25 | 24 | eleq2d 2687 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ↔ 𝑥 ∈ (𝑋 ∖ {𝑍}))) |
| 26 | 25 | biimpar 502 |
. . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
| 27 | | eqid 2622 |
. . . . . . . . . . 11
⊢ ran
(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
| 28 | | eqid 2622 |
. . . . . . . . . . 11
⊢
(inv‘(𝐻
↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = (inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
| 29 | 27, 28 | grpoinvcl 27378 |
. . . . . . . . . 10
⊢ (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
| 30 | 29 | adantll 750 |
. . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
| 31 | | eqid 2622 |
. . . . . . . . . . . 12
⊢
(GId‘(𝐻
↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) |
| 32 | 27, 31, 28 | grpolinv 27380 |
. . . . . . . . . . 11
⊢ (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))) |
| 33 | 32 | adantll 750 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))) |
| 34 | 2 | rngomndo 33734 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ RingOps → 𝐻 ∈ MndOp) |
| 35 | | mndomgmid 33670 |
. . . . . . . . . . . . . 14
⊢ (𝐻 ∈ MndOp → 𝐻 ∈ (Magma ∩ ExId
)) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ RingOps → 𝐻 ∈ (Magma ∩ ExId
)) |
| 37 | 36 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝐻 ∈ (Magma ∩ ExId
)) |
| 38 | 11, 4 | sseqtri 3637 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∖ {𝑍}) ⊆ ran 𝐺 |
| 39 | 2, 1 | rngorn1eq 33733 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ RingOps → ran 𝐺 = ran 𝐻) |
| 40 | 38, 39 | syl5sseq 3653 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ RingOps → (𝑋 ∖ {𝑍}) ⊆ ran 𝐻) |
| 41 | 40 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑋 ∖ {𝑍}) ⊆ ran 𝐻) |
| 42 | 1 | rneqi 5352 |
. . . . . . . . . . . . . . . 16
⊢ ran 𝐺 = ran (1st
‘𝑅) |
| 43 | 4, 42 | eqtri 2644 |
. . . . . . . . . . . . . . 15
⊢ 𝑋 = ran (1st
‘𝑅) |
| 44 | 43, 2, 6 | rngo1cl 33738 |
. . . . . . . . . . . . . 14
⊢ (𝑅 ∈ RingOps → 𝑈 ∈ 𝑋) |
| 45 | 44 | adantr 481 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈 ∈ 𝑋) |
| 46 | | eldifsn 4317 |
. . . . . . . . . . . . 13
⊢ (𝑈 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑈 ∈ 𝑋 ∧ 𝑈 ≠ 𝑍)) |
| 47 | 45, 8, 46 | sylanbrc 698 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → 𝑈 ∈ (𝑋 ∖ {𝑍})) |
| 48 | | grpomndo 33674 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ MndOp) |
| 49 | | mndoismgmOLD 33669 |
. . . . . . . . . . . . . 14
⊢ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ MndOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma) |
| 50 | 48, 49 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma) |
| 51 | 50 | adantl 482 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma) |
| 52 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ ran 𝐻 = ran 𝐻 |
| 53 | | eqid 2622 |
. . . . . . . . . . . . 13
⊢ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
| 54 | 52, 6, 53 | exidresid 33678 |
. . . . . . . . . . . 12
⊢ (((𝐻 ∈ (Magma ∩ ExId )
∧ (𝑋 ∖ {𝑍}) ⊆ ran 𝐻 ∧ 𝑈 ∈ (𝑋 ∖ {𝑍})) ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ Magma) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈) |
| 55 | 37, 41, 47, 51, 54 | syl31anc 1329 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈) |
| 56 | 55 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (GId‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) = 𝑈) |
| 57 | 33, 56 | eqtrd 2656 |
. . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈) |
| 58 | | oveq1 6657 |
. . . . . . . . . . 11
⊢ (𝑦 = ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥)) |
| 59 | 58 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ (𝑦 = ((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) → ((𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)) |
| 60 | 59 | rspcev 3309 |
. . . . . . . . 9
⊢
((((inv‘(𝐻
↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥) ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∧ (((inv‘(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))))‘𝑥)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈) |
| 61 | 30, 57, 60 | syl2anc 693 |
. . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈) |
| 62 | 26, 61 | syldan 487 |
. . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈) |
| 63 | 24 | adantr 481 |
. . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) = (𝑋 ∖ {𝑍})) |
| 64 | 63 | rexeqdv 3145 |
. . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈)) |
| 65 | | ovres 6800 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (𝑦𝐻𝑥)) |
| 66 | 65 | ancoms 469 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → (𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = (𝑦𝐻𝑥)) |
| 67 | 66 | eqeq1d 2624 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑦 ∈ (𝑋 ∖ {𝑍})) → ((𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ (𝑦𝐻𝑥) = 𝑈)) |
| 68 | 67 | rexbidva 3049 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑋 ∖ {𝑍}) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) |
| 69 | 68 | adantl 482 |
. . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) |
| 70 | 64, 69 | bitrd 268 |
. . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ ran (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑦(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) |
| 71 | 62, 70 | mpbid 222 |
. . . . . 6
⊢ (((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ∧ 𝑥 ∈ (𝑋 ∖ {𝑍})) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) |
| 72 | 71 | ralrimiva 2966 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) |
| 73 | 8, 72 | jca 554 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) → (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) |
| 74 | | fvex 6201 |
. . . . . . . . 9
⊢
(1st ‘𝑅) ∈ V |
| 75 | 1, 74 | eqeltri 2697 |
. . . . . . . 8
⊢ 𝐺 ∈ V |
| 76 | 75 | rnex 7100 |
. . . . . . 7
⊢ ran 𝐺 ∈ V |
| 77 | 4, 76 | eqeltri 2697 |
. . . . . 6
⊢ 𝑋 ∈ V |
| 78 | | difexg 4808 |
. . . . . 6
⊢ (𝑋 ∈ V → (𝑋 ∖ {𝑍}) ∈ V) |
| 79 | 77, 78 | mp1i 13 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝑋 ∖ {𝑍}) ∈ V) |
| 80 | | ffn 6045 |
. . . . . . . . 9
⊢ (𝐻:(𝑋 × 𝑋)⟶𝑋 → 𝐻 Fn (𝑋 × 𝑋)) |
| 81 | 14, 80 | syl 17 |
. . . . . . . 8
⊢ (𝑅 ∈ RingOps → 𝐻 Fn (𝑋 × 𝑋)) |
| 82 | 81 | adantr 481 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → 𝐻 Fn (𝑋 × 𝑋)) |
| 83 | | fnssres 6004 |
. . . . . . 7
⊢ ((𝐻 Fn (𝑋 × 𝑋) ∧ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ⊆ (𝑋 × 𝑋)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
| 84 | 82, 13, 83 | sylancl 694 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) |
| 85 | | ovres 6800 |
. . . . . . . . 9
⊢ ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣)) |
| 86 | 85 | adantl 482 |
. . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣)) |
| 87 | | eldifi 3732 |
. . . . . . . . . . . 12
⊢ (𝑢 ∈ (𝑋 ∖ {𝑍}) → 𝑢 ∈ 𝑋) |
| 88 | | eldifi 3732 |
. . . . . . . . . . . 12
⊢ (𝑣 ∈ (𝑋 ∖ {𝑍}) → 𝑣 ∈ 𝑋) |
| 89 | 87, 88 | anim12i 590 |
. . . . . . . . . . 11
⊢ ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) |
| 90 | 1, 2, 4 | rngocl 33700 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∈ RingOps ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋) → (𝑢𝐻𝑣) ∈ 𝑋) |
| 91 | 90 | 3expb 1266 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ RingOps ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑢𝐻𝑣) ∈ 𝑋) |
| 92 | 89, 91 | sylan2 491 |
. . . . . . . . . 10
⊢ ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ 𝑋) |
| 93 | 92 | adantlr 751 |
. . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ 𝑋) |
| 94 | | oveq2 6658 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 𝑢 → (𝑦𝐻𝑥) = (𝑦𝐻𝑢)) |
| 95 | 94 | eqeq1d 2624 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑢 → ((𝑦𝐻𝑥) = 𝑈 ↔ (𝑦𝐻𝑢) = 𝑈)) |
| 96 | 95 | rexbidv 3052 |
. . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑢 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ↔ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) |
| 97 | 96 | rspcv 3305 |
. . . . . . . . . . . . 13
⊢ (𝑢 ∈ (𝑋 ∖ {𝑍}) → (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) |
| 98 | 97 | imdistanri 727 |
. . . . . . . . . . . 12
⊢
((∀𝑥 ∈
(𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 ∧ 𝑢 ∈ (𝑋 ∖ {𝑍}))) |
| 99 | | eldifsn 4317 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 ∈ (𝑋 ∖ {𝑍}) ↔ (𝑣 ∈ 𝑋 ∧ 𝑣 ≠ 𝑍)) |
| 100 | | ssrexv 3667 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑋 ∖ {𝑍}) ⊆ 𝑋 → (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 → ∃𝑦 ∈ 𝑋 (𝑦𝐻𝑢) = 𝑈)) |
| 101 | 11, 100 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(∃𝑦 ∈
(𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 → ∃𝑦 ∈ 𝑋 (𝑦𝐻𝑢) = 𝑈) |
| 102 | 1, 2, 3, 4, 6 | zerdivemp1x 33746 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 ∈ RingOps ∧ 𝑢 ∈ 𝑋 ∧ ∃𝑦 ∈ 𝑋 (𝑦𝐻𝑢) = 𝑈) → (𝑣 ∈ 𝑋 → ((𝑢𝐻𝑣) = 𝑍 → 𝑣 = 𝑍))) |
| 103 | 101, 102 | syl3an3 1361 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑅 ∈ RingOps ∧ 𝑢 ∈ 𝑋 ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → (𝑣 ∈ 𝑋 → ((𝑢𝐻𝑣) = 𝑍 → 𝑣 = 𝑍))) |
| 104 | 87, 103 | syl3an2 1360 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑅 ∈ RingOps ∧ 𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → (𝑣 ∈ 𝑋 → ((𝑢𝐻𝑣) = 𝑍 → 𝑣 = 𝑍))) |
| 105 | 104 | 3expb 1266 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) → (𝑣 ∈ 𝑋 → ((𝑢𝐻𝑣) = 𝑍 → 𝑣 = 𝑍))) |
| 106 | 105 | imp 445 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣 ∈ 𝑋) → ((𝑢𝐻𝑣) = 𝑍 → 𝑣 = 𝑍)) |
| 107 | 106 | necon3d 2815 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣 ∈ 𝑋) → (𝑣 ≠ 𝑍 → (𝑢𝐻𝑣) ≠ 𝑍)) |
| 108 | 107 | impr 649 |
. . . . . . . . . . . . . . 15
⊢ (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ (𝑣 ∈ 𝑋 ∧ 𝑣 ≠ 𝑍)) → (𝑢𝐻𝑣) ≠ 𝑍) |
| 109 | 99, 108 | sylan2b 492 |
. . . . . . . . . . . . . 14
⊢ (((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) → (𝑢𝐻𝑣) ≠ 𝑍) |
| 110 | 109 | an32s 846 |
. . . . . . . . . . . . 13
⊢ (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈)) → (𝑢𝐻𝑣) ≠ 𝑍) |
| 111 | 110 | ancom2s 844 |
. . . . . . . . . . . 12
⊢ (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 ∧ 𝑢 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍) |
| 112 | 98, 111 | sylan2 491 |
. . . . . . . . . . 11
⊢ (((𝑅 ∈ RingOps ∧ 𝑣 ∈ (𝑋 ∖ {𝑍})) ∧ (∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ∧ 𝑢 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍) |
| 113 | 112 | an42s 870 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ RingOps ∧
∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍) |
| 114 | 113 | adantlrl 756 |
. . . . . . . . 9
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ≠ 𝑍) |
| 115 | | eldifsn 4317 |
. . . . . . . . 9
⊢ ((𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍}) ↔ ((𝑢𝐻𝑣) ∈ 𝑋 ∧ (𝑢𝐻𝑣) ≠ 𝑍)) |
| 116 | 93, 114, 115 | sylanbrc 698 |
. . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍})) |
| 117 | 86, 116 | eqeltrd 2701 |
. . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍})) |
| 118 | 117 | ralrimivva 2971 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → ∀𝑢 ∈ (𝑋 ∖ {𝑍})∀𝑣 ∈ (𝑋 ∖ {𝑍})(𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍})) |
| 119 | | ffnov 6764 |
. . . . . 6
⊢ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ↔ ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) Fn ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})) ∧ ∀𝑢 ∈ (𝑋 ∖ {𝑍})∀𝑣 ∈ (𝑋 ∖ {𝑍})(𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) ∈ (𝑋 ∖ {𝑍}))) |
| 120 | 84, 118, 119 | sylanbrc 698 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍})) |
| 121 | 116 | 3adantr3 1222 |
. . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻𝑣) ∈ (𝑋 ∖ {𝑍})) |
| 122 | | simpr3 1069 |
. . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → 𝑤 ∈ (𝑋 ∖ {𝑍})) |
| 123 | 121, 122 | ovresd 6801 |
. . . . . 6
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = ((𝑢𝐻𝑣)𝐻𝑤)) |
| 124 | 85 | 3adant3 1081 |
. . . . . . . 8
⊢ ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣)) |
| 125 | 124 | adantl 482 |
. . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣) = (𝑢𝐻𝑣)) |
| 126 | 125 | oveq1d 6665 |
. . . . . 6
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = ((𝑢𝐻𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) |
| 127 | | ovres 6800 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤)) |
| 128 | 127 | 3adant1 1079 |
. . . . . . . . 9
⊢ ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤)) |
| 129 | 128 | adantl 482 |
. . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑣𝐻𝑤)) |
| 130 | 129 | oveq2d 6666 |
. . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢𝐻(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = (𝑢𝐻(𝑣𝐻𝑤))) |
| 131 | | simpr1 1067 |
. . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → 𝑢 ∈ (𝑋 ∖ {𝑍})) |
| 132 | | fovrn 6804 |
. . . . . . . . . 10
⊢ (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍})) |
| 133 | 132 | 3adant3r1 1274 |
. . . . . . . . 9
⊢ (((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))):((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))⟶(𝑋 ∖ {𝑍}) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍})) |
| 134 | 120, 133 | sylan 488 |
. . . . . . . 8
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) ∈ (𝑋 ∖ {𝑍})) |
| 135 | 131, 134 | ovresd 6801 |
. . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = (𝑢𝐻(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤))) |
| 136 | | eldifi 3732 |
. . . . . . . . . 10
⊢ (𝑤 ∈ (𝑋 ∖ {𝑍}) → 𝑤 ∈ 𝑋) |
| 137 | 87, 88, 136 | 3anim123i 1247 |
. . . . . . . . 9
⊢ ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍})) → (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) |
| 138 | 1, 2, 4 | rngoass 33705 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ∧ 𝑤 ∈ 𝑋)) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤))) |
| 139 | 137, 138 | sylan2 491 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤))) |
| 140 | 139 | adantlr 751 |
. . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢𝐻𝑣)𝐻𝑤) = (𝑢𝐻(𝑣𝐻𝑤))) |
| 141 | 130, 135,
140 | 3eqtr4d 2666 |
. . . . . 6
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤)) = ((𝑢𝐻𝑣)𝐻𝑤)) |
| 142 | 123, 126,
141 | 3eqtr4d 2666 |
. . . . 5
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ (𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑣 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑤 ∈ (𝑋 ∖ {𝑍}))) → ((𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑣)(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤) = (𝑢(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))(𝑣(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑤))) |
| 143 | 44 | anim1i 592 |
. . . . . . 7
⊢ ((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) → (𝑈 ∈ 𝑋 ∧ 𝑈 ≠ 𝑍)) |
| 144 | 143, 46 | sylibr 224 |
. . . . . 6
⊢ ((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) → 𝑈 ∈ (𝑋 ∖ {𝑍})) |
| 145 | 144 | adantrr 753 |
. . . . 5
⊢ ((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → 𝑈 ∈ (𝑋 ∖ {𝑍})) |
| 146 | | ovres 6800 |
. . . . . . . 8
⊢ ((𝑈 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑈𝐻𝑢)) |
| 147 | 144, 146 | sylan 488 |
. . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑈𝐻𝑢)) |
| 148 | 2, 43, 6 | rngolidm 33736 |
. . . . . . . . 9
⊢ ((𝑅 ∈ RingOps ∧ 𝑢 ∈ 𝑋) → (𝑈𝐻𝑢) = 𝑢) |
| 149 | 87, 148 | sylan2 491 |
. . . . . . . 8
⊢ ((𝑅 ∈ RingOps ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝐻𝑢) = 𝑢) |
| 150 | 149 | adantlr 751 |
. . . . . . 7
⊢ (((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈𝐻𝑢) = 𝑢) |
| 151 | 147, 150 | eqtrd 2656 |
. . . . . 6
⊢ (((𝑅 ∈ RingOps ∧ 𝑈 ≠ 𝑍) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑢) |
| 152 | 151 | adantlrr 757 |
. . . . 5
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑈(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑢) |
| 153 | 96 | rspcva 3307 |
. . . . . . . . 9
⊢ ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) → ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) |
| 154 | | oveq1 6657 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑧 → (𝑦𝐻𝑢) = (𝑧𝐻𝑢)) |
| 155 | 154 | eqeq1d 2624 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑧 → ((𝑦𝐻𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈)) |
| 156 | 155 | cbvrexv 3172 |
. . . . . . . . . 10
⊢
(∃𝑦 ∈
(𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈 ↔ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈) |
| 157 | | ovres 6800 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → (𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = (𝑧𝐻𝑢)) |
| 158 | 157 | eqeq1d 2624 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ((𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈)) |
| 159 | 158 | ancoms 469 |
. . . . . . . . . . . 12
⊢ ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ 𝑧 ∈ (𝑋 ∖ {𝑍})) → ((𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ (𝑧𝐻𝑢) = 𝑈)) |
| 160 | 159 | rexbidva 3049 |
. . . . . . . . . . 11
⊢ (𝑢 ∈ (𝑋 ∖ {𝑍}) → (∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈 ↔ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈)) |
| 161 | 160 | biimpar 502 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧𝐻𝑢) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈) |
| 162 | 156, 161 | sylan2b 492 |
. . . . . . . . 9
⊢ ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑢) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈) |
| 163 | 153, 162 | syldan 487 |
. . . . . . . 8
⊢ ((𝑢 ∈ (𝑋 ∖ {𝑍}) ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈) |
| 164 | 163 | ancoms 469 |
. . . . . . 7
⊢
((∀𝑥 ∈
(𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈 ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈) |
| 165 | 164 | adantll 750 |
. . . . . 6
⊢ (((𝑅 ∈ RingOps ∧
∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈) |
| 166 | 165 | adantlrl 756 |
. . . . 5
⊢ (((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) ∧ 𝑢 ∈ (𝑋 ∖ {𝑍})) → ∃𝑧 ∈ (𝑋 ∖ {𝑍})(𝑧(𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍})))𝑢) = 𝑈) |
| 167 | 79, 120, 142, 145, 152, 166 | isgrpda 33754 |
. . . 4
⊢ ((𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈)) → (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) |
| 168 | 73, 167 | impbida 877 |
. . 3
⊢ (𝑅 ∈ RingOps → ((𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp ↔ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))) |
| 169 | 168 | pm5.32i 669 |
. 2
⊢ ((𝑅 ∈ RingOps ∧ (𝐻 ↾ ((𝑋 ∖ {𝑍}) × (𝑋 ∖ {𝑍}))) ∈ GrpOp) ↔ (𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))) |
| 170 | 5, 169 | bitri 264 |
1
⊢ (𝑅 ∈ DivRingOps ↔ (𝑅 ∈ RingOps ∧ (𝑈 ≠ 𝑍 ∧ ∀𝑥 ∈ (𝑋 ∖ {𝑍})∃𝑦 ∈ (𝑋 ∖ {𝑍})(𝑦𝐻𝑥) = 𝑈))) |