MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moan Structured version   Visualization version   GIF version

Theorem moan 2524
Description: "At most one" is still the case when a conjunct is added. (Contributed by NM, 22-Apr-1995.)
Assertion
Ref Expression
moan (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))

Proof of Theorem moan
StepHypRef Expression
1 simpr 477 . 2 ((𝜓𝜑) → 𝜑)
21moimi 2520 1 (∃*𝑥𝜑 → ∃*𝑥(𝜓𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  ∃*wmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475
This theorem is referenced by:  moani  2525  mooran1  2527  moanim  2529  mormo  3158  rmoan  3406
  Copyright terms: Public domain W3C validator