![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > moimi | Structured version Visualization version GIF version |
Description: "At most one" reverses implication. (Contributed by NM, 15-Feb-2006.) |
Ref | Expression |
---|---|
moimi.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
moimi | ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moim 2519 | . 2 ⊢ (∀𝑥(𝜑 → 𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑)) | |
2 | moimi.1 | . 2 ⊢ (𝜑 → 𝜓) | |
3 | 1, 2 | mpg 1724 | 1 ⊢ (∃*𝑥𝜓 → ∃*𝑥𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∃*wmo 2471 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 |
This theorem is referenced by: moa1 2521 moan 2524 moor 2526 mooran1 2527 mooran2 2528 moaneu 2533 2moex 2543 2euex 2544 2exeu 2549 sndisj 4644 disjxsn 4646 fununmo 5933 funcnvsn 5936 nfunsn 6225 caovmo 6871 iunmapdisj 8846 brdom3 9350 brdom5 9351 brdom4 9352 nqerf 9752 shftfn 13813 2ndcdisj2 21260 plyexmo 24068 ajfuni 27715 funadj 28745 cnlnadjeui 28936 |
Copyright terms: Public domain | W3C validator |