MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moimi Structured version   Visualization version   GIF version

Theorem moimi 2520
Description: "At most one" reverses implication. (Contributed by NM, 15-Feb-2006.)
Hypothesis
Ref Expression
moimi.1 (𝜑𝜓)
Assertion
Ref Expression
moimi (∃*𝑥𝜓 → ∃*𝑥𝜑)

Proof of Theorem moimi
StepHypRef Expression
1 moim 2519 . 2 (∀𝑥(𝜑𝜓) → (∃*𝑥𝜓 → ∃*𝑥𝜑))
2 moimi.1 . 2 (𝜑𝜓)
31, 2mpg 1724 1 (∃*𝑥𝜓 → ∃*𝑥𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  ∃*wmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-eu 2474  df-mo 2475
This theorem is referenced by:  moa1  2521  moan  2524  moor  2526  mooran1  2527  mooran2  2528  moaneu  2533  2moex  2543  2euex  2544  2exeu  2549  sndisj  4644  disjxsn  4646  fununmo  5933  funcnvsn  5936  nfunsn  6225  caovmo  6871  iunmapdisj  8846  brdom3  9350  brdom5  9351  brdom4  9352  nqerf  9752  shftfn  13813  2ndcdisj2  21260  plyexmo  24068  ajfuni  27715  funadj  28745  cnlnadjeui  28936
  Copyright terms: Public domain W3C validator