| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mobid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by NM, 8-Mar-1995.) |
| Ref | Expression |
|---|---|
| mobid.1 | ⊢ Ⅎ𝑥𝜑 |
| mobid.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| mobid | ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mobid.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | mobid.2 | . . . 4 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 1, 2 | exbid 2091 | . . 3 ⊢ (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒)) |
| 4 | 1, 2 | eubid 2488 | . . 3 ⊢ (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒)) |
| 5 | 3, 4 | imbi12d 334 | . 2 ⊢ (𝜑 → ((∃𝑥𝜓 → ∃!𝑥𝜓) ↔ (∃𝑥𝜒 → ∃!𝑥𝜒))) |
| 6 | df-mo 2475 | . 2 ⊢ (∃*𝑥𝜓 ↔ (∃𝑥𝜓 → ∃!𝑥𝜓)) | |
| 7 | df-mo 2475 | . 2 ⊢ (∃*𝑥𝜒 ↔ (∃𝑥𝜒 → ∃!𝑥𝜒)) | |
| 8 | 5, 6, 7 | 3bitr4g 303 | 1 ⊢ (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∃wex 1704 Ⅎwnf 1708 ∃!weu 2470 ∃*wmo 2471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 |
| This theorem is referenced by: mobidv 2491 moanim 2529 rmobida 3129 rmoeq1f 3137 funcnvmptOLD 29467 funcnvmpt 29468 |
| Copyright terms: Public domain | W3C validator |