MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moop2 Structured version   Visualization version   GIF version

Theorem moop2 4966
Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
moop2.1 𝐵 ∈ V
Assertion
Ref Expression
moop2 ∃*𝑥 𝐴 = ⟨𝐵, 𝑥
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem moop2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqtr2 2642 . . . 4 ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → ⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩)
2 moop2.1 . . . . . 6 𝐵 ∈ V
3 vex 3203 . . . . . 6 𝑥 ∈ V
42, 3opth 4945 . . . . 5 (⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩ ↔ (𝐵 = 𝑦 / 𝑥𝐵𝑥 = 𝑦))
54simprbi 480 . . . 4 (⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩ → 𝑥 = 𝑦)
61, 5syl 17 . . 3 ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦)
76gen2 1723 . 2 𝑥𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦)
8 nfcsb1v 3549 . . . . 5 𝑥𝑦 / 𝑥𝐵
9 nfcv 2764 . . . . 5 𝑥𝑦
108, 9nfop 4418 . . . 4 𝑥𝑦 / 𝑥𝐵, 𝑦
1110nfeq2 2780 . . 3 𝑥 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦
12 csbeq1a 3542 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
13 id 22 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
1412, 13opeq12d 4410 . . . 4 (𝑥 = 𝑦 → ⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩)
1514eqeq2d 2632 . . 3 (𝑥 = 𝑦 → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩))
1611, 15mo4f 2516 . 2 (∃*𝑥 𝐴 = ⟨𝐵, 𝑥⟩ ↔ ∀𝑥𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦))
177, 16mpbir 221 1 ∃*𝑥 𝐴 = ⟨𝐵, 𝑥
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wal 1481   = wceq 1483  wcel 1990  ∃*wmo 2471  Vcvv 3200  csb 3533  cop 4183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184
This theorem is referenced by:  euop2  4974
  Copyright terms: Public domain W3C validator