Proof of Theorem opeqsn
| Step | Hyp | Ref
| Expression |
| 1 | | opeqsn.1 |
. . . 4
⊢ 𝐴 ∈ V |
| 2 | | opeqsn.2 |
. . . 4
⊢ 𝐵 ∈ V |
| 3 | 1, 2 | dfop 4401 |
. . 3
⊢
〈𝐴, 𝐵〉 = {{𝐴}, {𝐴, 𝐵}} |
| 4 | 3 | eqeq1i 2627 |
. 2
⊢
(〈𝐴, 𝐵〉 = {𝐶} ↔ {{𝐴}, {𝐴, 𝐵}} = {𝐶}) |
| 5 | | snex 4908 |
. . 3
⊢ {𝐴} ∈ V |
| 6 | | prex 4909 |
. . 3
⊢ {𝐴, 𝐵} ∈ V |
| 7 | | opeqsn.3 |
. . 3
⊢ 𝐶 ∈ V |
| 8 | 5, 6, 7 | preqsn 4393 |
. 2
⊢ ({{𝐴}, {𝐴, 𝐵}} = {𝐶} ↔ ({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶)) |
| 9 | | eqcom 2629 |
. . . . 5
⊢ ({𝐴} = {𝐴, 𝐵} ↔ {𝐴, 𝐵} = {𝐴}) |
| 10 | 1, 2, 1 | preqsn 4393 |
. . . . 5
⊢ ({𝐴, 𝐵} = {𝐴} ↔ (𝐴 = 𝐵 ∧ 𝐵 = 𝐴)) |
| 11 | | eqcom 2629 |
. . . . . . 7
⊢ (𝐵 = 𝐴 ↔ 𝐴 = 𝐵) |
| 12 | 11 | anbi2i 730 |
. . . . . 6
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐴) ↔ (𝐴 = 𝐵 ∧ 𝐴 = 𝐵)) |
| 13 | | anidm 676 |
. . . . . 6
⊢ ((𝐴 = 𝐵 ∧ 𝐴 = 𝐵) ↔ 𝐴 = 𝐵) |
| 14 | 12, 13 | bitri 264 |
. . . . 5
⊢ ((𝐴 = 𝐵 ∧ 𝐵 = 𝐴) ↔ 𝐴 = 𝐵) |
| 15 | 9, 10, 14 | 3bitri 286 |
. . . 4
⊢ ({𝐴} = {𝐴, 𝐵} ↔ 𝐴 = 𝐵) |
| 16 | 15 | anbi1i 731 |
. . 3
⊢ (({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵 ∧ {𝐴, 𝐵} = 𝐶)) |
| 17 | | dfsn2 4190 |
. . . . . . 7
⊢ {𝐴} = {𝐴, 𝐴} |
| 18 | | preq2 4269 |
. . . . . . 7
⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) |
| 19 | 17, 18 | syl5req 2669 |
. . . . . 6
⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
| 20 | 19 | eqeq1d 2624 |
. . . . 5
⊢ (𝐴 = 𝐵 → ({𝐴, 𝐵} = 𝐶 ↔ {𝐴} = 𝐶)) |
| 21 | | eqcom 2629 |
. . . . 5
⊢ ({𝐴} = 𝐶 ↔ 𝐶 = {𝐴}) |
| 22 | 20, 21 | syl6bb 276 |
. . . 4
⊢ (𝐴 = 𝐵 → ({𝐴, 𝐵} = 𝐶 ↔ 𝐶 = {𝐴})) |
| 23 | 22 | pm5.32i 669 |
. . 3
⊢ ((𝐴 = 𝐵 ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |
| 24 | 16, 23 | bitri 264 |
. 2
⊢ (({𝐴} = {𝐴, 𝐵} ∧ {𝐴, 𝐵} = 𝐶) ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |
| 25 | 4, 8, 24 | 3bitri 286 |
1
⊢
(〈𝐴, 𝐵〉 = {𝐶} ↔ (𝐴 = 𝐵 ∧ 𝐶 = {𝐴})) |