| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mooran2 | Structured version Visualization version GIF version | ||
| Description: "At most one" exports disjunction to conjunction. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
| Ref | Expression |
|---|---|
| mooran2 | ⊢ (∃*𝑥(𝜑 ∨ 𝜓) → (∃*𝑥𝜑 ∧ ∃*𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | moor 2526 | . 2 ⊢ (∃*𝑥(𝜑 ∨ 𝜓) → ∃*𝑥𝜑) | |
| 2 | olc 399 | . . 3 ⊢ (𝜓 → (𝜑 ∨ 𝜓)) | |
| 3 | 2 | moimi 2520 | . 2 ⊢ (∃*𝑥(𝜑 ∨ 𝜓) → ∃*𝑥𝜓) |
| 4 | 1, 3 | jca 554 | 1 ⊢ (∃*𝑥(𝜑 ∨ 𝜓) → (∃*𝑥𝜑 ∧ ∃*𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 383 ∧ wa 384 ∃*wmo 2471 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-eu 2474 df-mo 2475 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |