MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mosub Structured version   Visualization version   GIF version

Theorem mosub 3384
Description: "At most one" remains true after substitution. (Contributed by NM, 9-Mar-1995.)
Hypothesis
Ref Expression
mosub.1 ∃*𝑥𝜑
Assertion
Ref Expression
mosub ∃*𝑥𝑦(𝑦 = 𝐴𝜑)
Distinct variable group:   𝑥,𝑦,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem mosub
StepHypRef Expression
1 moeq 3382 . 2 ∃*𝑦 𝑦 = 𝐴
2 mosub.1 . . 3 ∃*𝑥𝜑
32ax-gen 1722 . 2 𝑦∃*𝑥𝜑
4 moexexv 2542 . 2 ((∃*𝑦 𝑦 = 𝐴 ∧ ∀𝑦∃*𝑥𝜑) → ∃*𝑥𝑦(𝑦 = 𝐴𝜑))
51, 3, 4mp2an 708 1 ∃*𝑥𝑦(𝑦 = 𝐴𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 384  wal 1481   = wceq 1483  wex 1704  ∃*wmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-v 3202
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator