![]() |
Metamath
Proof Explorer Theorem List (p. 34 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | spc2ev 3301* | Existential specialization, using implicit substitution. (Contributed by NM, 3-Aug-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝜓 → ∃𝑥∃𝑦𝜑) | ||
Theorem | rspct 3302* | A closed version of rspc 3303. (Contributed by Andrew Salmon, 6-Jun-2011.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ (∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) → (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓))) | ||
Theorem | rspc 3303* | Restricted specialization, using implicit substitution. (Contributed by NM, 19-Apr-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) | ||
Theorem | rspce 3304* | Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) (Revised by Mario Carneiro, 11-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) | ||
Theorem | rspcv 3305* | Restricted specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∀𝑥 ∈ 𝐵 𝜑 → 𝜓)) | ||
Theorem | rspccv 3306* | Restricted specialization, using implicit substitution. (Contributed by NM, 2-Feb-2006.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ 𝐵 𝜑 → (𝐴 ∈ 𝐵 → 𝜓)) | ||
Theorem | rspcva 3307* | Restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-2005.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐵 𝜑) → 𝜓) | ||
Theorem | rspccva 3308* | Restricted specialization, using implicit substitution. (Contributed by NM, 26-Jul-2006.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∀𝑥 ∈ 𝐵 𝜑 ∧ 𝐴 ∈ 𝐵) → 𝜓) | ||
Theorem | rspcev 3309* | Restricted existential specialization, using implicit substitution. (Contributed by NM, 26-May-1998.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓) → ∃𝑥 ∈ 𝐵 𝜑) | ||
Theorem | rspcimdv 3310* | Restricted specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) | ||
Theorem | rspcimedv 3311* | Restricted existential specialization, using implicit substitution. (Contributed by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | rspcdv 3312* | Restricted specialization, using implicit substitution. (Contributed by NM, 17-Feb-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 → 𝜒)) | ||
Theorem | rspcedv 3313* | Restricted existential specialization, using implicit substitution. (Contributed by FL, 17-Apr-2007.) (Revised by Mario Carneiro, 4-Jan-2017.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (𝜒 → ∃𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | rspcebdv 3314* | Restricted existential specialization, using implicit substitution in both directions. (Contributed by AV, 8-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ ((𝜑 ∧ 𝜓) → 𝑥 = 𝐴) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ 𝜒)) | ||
Theorem | rspcda 3315* | Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 29-Jun-2020.) |
⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ Ⅎ𝑥𝜑 ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | rspcdva 3316* | Restricted specialization, using implicit substitution. (Contributed by Thierry Arnoux, 21-Jun-2020.) |
⊢ (𝑥 = 𝐶 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝜓) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝜒) | ||
Theorem | rspcedvd 3317* | Restricted existential specialization, using implicit substitution. Variant of rspcedv 3313. (Contributed by AV, 27-Nov-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
Theorem | rspcedeq1vd 3318* | Restricted existential specialization, using implicit substitution. Variant of rspcedvd 3317 for equations, in which the left hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) | ||
Theorem | rspcedeq2vd 3319* | Restricted existential specialization, using implicit substitution. Variant of rspcedvd 3317 for equations, in which the right hand side depends on the quantified variable. (Contributed by AV, 24-Dec-2019.) |
⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐶 = 𝐷) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐶 = 𝐷) | ||
Theorem | rspc2 3320* | Restricted specialization with two quantifiers, using implicit substitution. (Contributed by NM, 9-Nov-2012.) |
⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑦𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) | ||
Theorem | rspc2gv 3321* | Restricted specialization with two quantifiers, using implicit substitution. (Contributed by BJ, 2-Dec-2021.) |
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑊 𝜑 → 𝜓)) | ||
Theorem | rspc2v 3322* | 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 13-Sep-1999.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑 → 𝜓)) | ||
Theorem | rspc2va 3323* | 2-variable restricted specialization, using implicit substitution. (Contributed by NM, 18-Jun-2014.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜑) → 𝜓) | ||
Theorem | rspc2ev 3324* | 2-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 16-Oct-1999.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝜓) → ∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 𝜑) | ||
Theorem | rspc3v 3325* | 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) → (∀𝑥 ∈ 𝑅 ∀𝑦 ∈ 𝑆 ∀𝑧 ∈ 𝑇 𝜑 → 𝜓)) | ||
Theorem | rspc3ev 3326* | 3-variable restricted existential specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜃)) & ⊢ (𝑧 = 𝐶 → (𝜃 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝑅 ∧ 𝐵 ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ 𝜓) → ∃𝑥 ∈ 𝑅 ∃𝑦 ∈ 𝑆 ∃𝑧 ∈ 𝑇 𝜑) | ||
Theorem | ralxpxfr2d 3327* | Transfer a universal quantifier between one variable with pair-like semantics and two. (Contributed by Stefan O'Rear, 27-Feb-2015.) |
⊢ 𝐴 ∈ V & ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 ∃𝑧 ∈ 𝐷 𝑥 = 𝐴)) & ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 𝜓 ↔ ∀𝑦 ∈ 𝐶 ∀𝑧 ∈ 𝐷 𝜒)) | ||
Theorem | rexraleqim 3328* | Statement following from existence and generalization with equality. (Contributed by AV, 9-Feb-2019.) |
⊢ (𝑥 = 𝑧 → (𝜓 ↔ 𝜑)) & ⊢ (𝑧 = 𝑌 → (𝜑 ↔ 𝜃)) ⇒ ⊢ ((∃𝑧 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 (𝜓 → 𝑥 = 𝑌)) → 𝜃) | ||
Theorem | eqvincg 3329* | A variable introduction law for class equality, closed form. (Contributed by Thierry Arnoux, 2-Mar-2017.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵))) | ||
Theorem | eqvinc 3330* | A variable introduction law for class equality. (Contributed by NM, 14-Apr-1995.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) (Proof shortened by Thierry Arnoux, 23-Jan-2022.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) | ||
Theorem | eqvincf 3331 | A variable introduction law for class equality, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 14-Sep-2003.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 = 𝐵 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝑥 = 𝐵)) | ||
Theorem | alexeqg 3332* | Two ways to express substitution of 𝐴 for 𝑥 in 𝜑. This is the analogue for classes of sb56 2150. (Contributed by NM, 2-Mar-1995.) (Revised by BJ, 27-Apr-2019.) |
⊢ (𝐴 ∈ 𝑉 → (∀𝑥(𝑥 = 𝐴 → 𝜑) ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | ||
Theorem | ceqex 3333* | Equality implies equivalence with substitution. (Contributed by NM, 2-Mar-1995.) (Proof shortened by BJ, 1-May-2019.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ ∃𝑥(𝑥 = 𝐴 ∧ 𝜑))) | ||
Theorem | ceqsexg 3334* | A representation of explicit substitution of a class for a variable, inferred from an implicit substitution hypothesis. (Contributed by NM, 11-Oct-2004.) |
⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsexgv 3335* | Elimination of an existential quantifier, using implicit substitution. (Contributed by NM, 29-Dec-1996.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∃𝑥(𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsrexv 3336* | Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 30-Apr-2004.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ 𝜓)) | ||
Theorem | ceqsrexbv 3337* | Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by Mario Carneiro, 14-Mar-2014.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) | ||
Theorem | ceqsrex2v 3338* | Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) ⇒ ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (∃𝑥 ∈ 𝐶 ∃𝑦 ∈ 𝐷 ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) ∧ 𝜑) ↔ 𝜒)) | ||
Theorem | clel2 3339* | An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐴 → 𝑥 ∈ 𝐵)) | ||
Theorem | clel3g 3340* | An alternate definition of class membership when the class is a set. (Contributed by NM, 13-Aug-2005.) |
⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥))) | ||
Theorem | clel3 3341* | An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ ∃𝑥(𝑥 = 𝐵 ∧ 𝐴 ∈ 𝑥)) | ||
Theorem | clel4 3342* | An alternate definition of class membership when the class is a set. (Contributed by NM, 18-Aug-1993.) |
⊢ 𝐵 ∈ V ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ ∀𝑥(𝑥 = 𝐵 → 𝐴 ∈ 𝑥)) | ||
Theorem | clel5 3343* | Alternate definition of class membership: a class 𝑋 is an element of another class 𝐴 iff there is an element of 𝐴 equal to 𝑋. (Contributed by AV, 13-Nov-2020.) |
⊢ (𝑋 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 𝑋 = 𝑥) | ||
Theorem | pm13.183 3344* | Compare theorem *13.183 in [WhiteheadRussell] p. 178. Only 𝐴 is required to be a set. (Contributed by Andrew Salmon, 3-Jun-2011.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 = 𝐵 ↔ ∀𝑧(𝑧 = 𝐴 ↔ 𝑧 = 𝐵))) | ||
Theorem | rr19.3v 3345* | Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. We don't need the nonempty class condition of r19.3rzv 4064 when there is an outer quantifier. (Contributed by NM, 25-Oct-2012.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rr19.28v 3346* | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. We don't need the nonempty class condition of r19.28zv 4066 when there is an outer quantifier. (Contributed by NM, 29-Oct-2012.) |
⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∀𝑥 ∈ 𝐴 (𝜑 ∧ ∀𝑦 ∈ 𝐴 𝜓)) | ||
Theorem | elabgt 3347* | Membership in a class abstraction, using implicit substitution. (Closed theorem version of elabg 3351.) (Contributed by NM, 7-Nov-2005.) (Proof shortened by Andrew Salmon, 8-Jun-2011.) |
⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓))) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | ||
Theorem | elabgf 3348 | Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | ||
Theorem | elabf 3349* | Membership in a class abstraction, using implicit substitution. (Contributed by NM, 1-Aug-1994.) (Revised by Mario Carneiro, 12-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 & ⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) | ||
Theorem | elab 3350* | Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 1-Aug-1994.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) | ||
Theorem | elabg 3351* | Membership in a class abstraction, using implicit substitution. Compare Theorem 6.13 of [Quine] p. 44. (Contributed by NM, 14-Apr-1995.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | ||
Theorem | elabd 3352* | Explicit demonstration the class {𝑥 ∣ 𝜓} is not empty by the example 𝑋. (Contributed by RP, 12-Aug-2020.) |
⊢ (𝜑 → 𝑋 ∈ V) & ⊢ (𝜑 → 𝜒) & ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥𝜓) | ||
Theorem | elab2g 3353* | Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝐵 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝐵 ↔ 𝜓)) | ||
Theorem | elab2 3354* | Membership in a class abstraction, using implicit substitution. (Contributed by NM, 13-Sep-1995.) |
⊢ 𝐴 ∈ V & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝐵 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ 𝜓) | ||
Theorem | elab4g 3355* | Membership in a class abstraction, using implicit substitution. (Contributed by NM, 17-Oct-2012.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝐵 = {𝑥 ∣ 𝜑} ⇒ ⊢ (𝐴 ∈ 𝐵 ↔ (𝐴 ∈ V ∧ 𝜓)) | ||
Theorem | elab3gf 3356 | Membership in a class abstraction, with a weaker antecedent than elabgf 3348. (Contributed by NM, 6-Sep-2011.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | ||
Theorem | elab3g 3357* | Membership in a class abstraction, with a weaker antecedent than elabg 3351. (Contributed by NM, 29-Aug-2006.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝜓 → 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓)) | ||
Theorem | elab3 3358* | Membership in a class abstraction using implicit substitution. (Contributed by NM, 10-Nov-2000.) |
⊢ (𝜓 → 𝐴 ∈ V) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∣ 𝜑} ↔ 𝜓) | ||
Theorem | elrabi 3359* | Implication for the membership in a restricted class abstraction. (Contributed by Alexander van der Vekens, 31-Dec-2017.) |
⊢ (𝐴 ∈ {𝑥 ∈ 𝑉 ∣ 𝜑} → 𝐴 ∈ 𝑉) | ||
Theorem | elrabf 3360 | Membership in a restricted class abstraction, using implicit substitution. This version has bound-variable hypotheses in place of distinct variable restrictions. (Contributed by NM, 21-Sep-2003.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ Ⅎ𝑥𝜓 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) | ||
Theorem | rabtru 3361 | Abstract builder using the constant wff ⊤ (Contributed by Thierry Arnoux, 4-May-2020.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ {𝑥 ∈ 𝐴 ∣ ⊤} = 𝐴 | ||
Theorem | elrab3t 3362* | Membership in a restricted class abstraction, using implicit substitution. (Closed theorem version of elrab3 3364.) (Contributed by Thierry Arnoux, 31-Aug-2017.) |
⊢ ((∀𝑥(𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ∧ 𝐴 ∈ 𝐵) → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) | ||
Theorem | elrab 3363* | Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 21-May-1999.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) | ||
Theorem | elrab3 3364* | Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) | ||
Theorem | elrabd 3365* | Membership in a restricted class abstraction, using implicit substitution. Deduction version of elrab 3363. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → 𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜓}) | ||
Theorem | elrab2 3366* | Membership in a class abstraction, using implicit substitution. (Contributed by NM, 2-Nov-2006.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ 𝐶 = {𝑥 ∈ 𝐵 ∣ 𝜑} ⇒ ⊢ (𝐴 ∈ 𝐶 ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) | ||
Theorem | ralab 3367* | Universal quantification over a class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∀𝑥(𝜓 → 𝜒)) | ||
Theorem | ralrab 3368* | Universal quantification over a restricted class abstraction. (Contributed by Jeff Madsen, 10-Jun-2010.) |
⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) | ||
Theorem | rexab 3369* | Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 23-Jan-2014.) (Revised by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜒 ↔ ∃𝑥(𝜓 ∧ 𝜒)) | ||
Theorem | rexrab 3370* | Existential quantification over a class abstraction. (Contributed by Jeff Madsen, 17-Jun-2011.) (Revised by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑦 = 𝑥 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜒 ↔ ∃𝑥 ∈ 𝐴 (𝜓 ∧ 𝜒)) | ||
Theorem | ralab2 3371* | Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∀𝑦(𝜑 → 𝜒)) | ||
Theorem | ralrab2 3372* | Universal quantification over a restricted class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∀𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∀𝑦 ∈ 𝐴 (𝜑 → 𝜒)) | ||
Theorem | rexab2 3373* | Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥 ∈ {𝑦 ∣ 𝜑}𝜓 ↔ ∃𝑦(𝜑 ∧ 𝜒)) | ||
Theorem | rexrab2 3374* | Existential quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.) |
⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (∃𝑥 ∈ {𝑦 ∈ 𝐴 ∣ 𝜑}𝜓 ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜒)) | ||
Theorem | abidnf 3375* | Identity used to create closed-form versions of bound-variable hypothesis builders for class expressions. (Contributed by NM, 10-Nov-2005.) (Proof shortened by Mario Carneiro, 12-Oct-2016.) |
⊢ (Ⅎ𝑥𝐴 → {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} = 𝐴) | ||
Theorem | dedhb 3376* | A deduction theorem for converting the inference ⊢ Ⅎ𝑥𝐴 => ⊢ 𝜑 into a closed theorem. Use nfa1 2028 and nfab 2769 to eliminate the hypothesis of the substitution instance 𝜓 of the inference. For converting the inference form into a deduction form, abidnf 3375 is useful. (Contributed by NM, 8-Dec-2006.) |
⊢ (𝐴 = {𝑧 ∣ ∀𝑥 𝑧 ∈ 𝐴} → (𝜑 ↔ 𝜓)) & ⊢ 𝜓 ⇒ ⊢ (Ⅎ𝑥𝐴 → 𝜑) | ||
Theorem | eqeu 3377* | A condition which implies existential uniqueness. (Contributed by Jeff Hankins, 8-Sep-2009.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ 𝜓 ∧ ∀𝑥(𝜑 → 𝑥 = 𝐴)) → ∃!𝑥𝜑) | ||
Theorem | eueq 3378* | Equality has existential uniqueness. (Contributed by NM, 25-Nov-1994.) |
⊢ (𝐴 ∈ V ↔ ∃!𝑥 𝑥 = 𝐴) | ||
Theorem | eueq1 3379* | Equality has existential uniqueness. (Contributed by NM, 5-Apr-1995.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ∃!𝑥 𝑥 = 𝐴 | ||
Theorem | eueq2 3380* | Equality has existential uniqueness (split into 2 cases). (Contributed by NM, 5-Apr-1995.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ 𝜑 ∧ 𝑥 = 𝐵)) | ||
Theorem | eueq3 3381* | Equality has existential uniqueness (split into 3 cases). (Contributed by NM, 5-Apr-1995.) (Proof shortened by Mario Carneiro, 28-Sep-2015.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ¬ (𝜑 ∧ 𝜓) ⇒ ⊢ ∃!𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) | ||
Theorem | moeq 3382* | There is at most one set equal to a class. (Contributed by NM, 8-Mar-1995.) |
⊢ ∃*𝑥 𝑥 = 𝐴 | ||
Theorem | moeq3 3383* | "At most one" property of equality (split into 3 cases). (The first two hypotheses could be eliminated with longer proof.) (Contributed by NM, 23-Apr-1995.) |
⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ ¬ (𝜑 ∧ 𝜓) ⇒ ⊢ ∃*𝑥((𝜑 ∧ 𝑥 = 𝐴) ∨ (¬ (𝜑 ∨ 𝜓) ∧ 𝑥 = 𝐵) ∨ (𝜓 ∧ 𝑥 = 𝐶)) | ||
Theorem | mosub 3384* | "At most one" remains true after substitution. (Contributed by NM, 9-Mar-1995.) |
⊢ ∃*𝑥𝜑 ⇒ ⊢ ∃*𝑥∃𝑦(𝑦 = 𝐴 ∧ 𝜑) | ||
Theorem | mo2icl 3385* | Theorem for inferring "at most one." (Contributed by NM, 17-Oct-1996.) |
⊢ (∀𝑥(𝜑 → 𝑥 = 𝐴) → ∃*𝑥𝜑) | ||
Theorem | mob2 3386* | Consequence of "at most one." (Contributed by NM, 2-Jan-2015.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑 ∧ 𝜑) → (𝑥 = 𝐴 ↔ 𝜓)) | ||
Theorem | moi2 3387* | Consequence of "at most one." (Contributed by NM, 29-Jun-2008.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (((𝐴 ∈ 𝐵 ∧ ∃*𝑥𝜑) ∧ (𝜑 ∧ 𝜓)) → 𝑥 = 𝐴) | ||
Theorem | mob 3388* | Equality implied by "at most one." (Contributed by NM, 18-Feb-2006.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ 𝜓) → (𝐴 = 𝐵 ↔ 𝜒)) | ||
Theorem | moi 3389* | Equality implied by "at most one." (Contributed by NM, 18-Feb-2006.) |
⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜒)) ⇒ ⊢ (((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ ∃*𝑥𝜑 ∧ (𝜓 ∧ 𝜒)) → 𝐴 = 𝐵) | ||
Theorem | morex 3390* | Derive membership from uniqueness. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((∃𝑥 ∈ 𝐴 𝜑 ∧ ∃*𝑥𝜑) → (𝜓 → 𝐵 ∈ 𝐴)) | ||
Theorem | euxfr2 3391* | Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.) |
⊢ 𝐴 ∈ V & ⊢ ∃*𝑦 𝑥 = 𝐴 ⇒ ⊢ (∃!𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝜑) ↔ ∃!𝑦𝜑) | ||
Theorem | euxfr 3392* | Transfer existential uniqueness from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by NM, 14-Nov-2004.) |
⊢ 𝐴 ∈ V & ⊢ ∃!𝑦 𝑥 = 𝐴 & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥𝜑 ↔ ∃!𝑦𝜓) | ||
Theorem | euind 3393* | Existential uniqueness via an indirect equality. (Contributed by NM, 11-Oct-2010.) |
⊢ 𝐵 ∈ V & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) ⇒ ⊢ ((∀𝑥∀𝑦((𝜑 ∧ 𝜓) → 𝐴 = 𝐵) ∧ ∃𝑥𝜑) → ∃!𝑧∀𝑥(𝜑 → 𝑧 = 𝐴)) | ||
Theorem | reu2 3394* | A way to express restricted uniqueness. (Contributed by NM, 22-Nov-1994.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ [𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))) | ||
Theorem | reu6 3395* | A way to express restricted uniqueness. (Contributed by NM, 20-Oct-2006.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝑦)) | ||
Theorem | reu3 3396* | A way to express restricted uniqueness. (Contributed by NM, 24-Oct-2006.) |
⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∃𝑦 ∈ 𝐴 ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝑦))) | ||
Theorem | reu6i 3397* | A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ ((𝐵 ∈ 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝜑 ↔ 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) | ||
Theorem | eqreu 3398* | A condition which implies existential uniqueness. (Contributed by Mario Carneiro, 2-Oct-2015.) |
⊢ (𝑥 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐵 ∈ 𝐴 ∧ 𝜓 ∧ ∀𝑥 ∈ 𝐴 (𝜑 → 𝑥 = 𝐵)) → ∃!𝑥 ∈ 𝐴 𝜑) | ||
Theorem | rmo4 3399* | Restricted "at most one" using implicit substitution. (Contributed by NM, 24-Oct-2006.) (Revised by NM, 16-Jun-2017.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦)) | ||
Theorem | reu4 3400* | Restricted uniqueness using implicit substitution. (Contributed by NM, 23-Nov-1994.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ((𝜑 ∧ 𝜓) → 𝑥 = 𝑦))) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |