| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nanim | Structured version Visualization version GIF version | ||
| Description: Show equivalence between implication and the Nicod version. To derive nic-dfim 1594, apply nanbi 1454. (Contributed by Jeff Hoffman, 19-Nov-2007.) |
| Ref | Expression |
|---|---|
| nanim | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nannan 1451 | . 2 ⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ↔ (𝜑 → (𝜓 ∧ 𝜓))) | |
| 2 | anidmdbi 678 | . 2 ⊢ ((𝜑 → (𝜓 ∧ 𝜓)) ↔ (𝜑 → 𝜓)) | |
| 3 | 1, 2 | bitr2i 265 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 ⊼ wnan 1447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-nan 1448 |
| This theorem is referenced by: nic-dfim 1594 nic-ax 1598 waj-ax 32413 lukshef-ax2 32414 |
| Copyright terms: Public domain | W3C validator |