| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nic-dfim | Structured version Visualization version GIF version | ||
| Description: Define implication in terms of 'nand'. Analogous to ((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ↔ (𝜑 → 𝜓)). In a pure (standalone) treatment of Nicod's axiom, this theorem would be changed to a definition ($a statement). (Contributed by NM, 11-Dec-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nic-dfim | ⊢ (((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ (𝜑 → 𝜓)) ⊼ (((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) ⊼ ((𝜑 → 𝜓) ⊼ (𝜑 → 𝜓)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nanim 1452 | . . 3 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) | |
| 2 | 1 | bicomi 214 | . 2 ⊢ ((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ↔ (𝜑 → 𝜓)) |
| 3 | nanbi 1454 | . 2 ⊢ (((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ↔ (𝜑 → 𝜓)) ↔ (((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ (𝜑 → 𝜓)) ⊼ (((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) ⊼ ((𝜑 → 𝜓) ⊼ (𝜑 → 𝜓))))) | |
| 4 | 2, 3 | mpbi 220 | 1 ⊢ (((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ (𝜑 → 𝜓)) ⊼ (((𝜑 ⊼ (𝜓 ⊼ 𝜓)) ⊼ (𝜑 ⊼ (𝜓 ⊼ 𝜓))) ⊼ ((𝜑 → 𝜓) ⊼ (𝜑 → 𝜓)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ⊼ wnan 1447 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-nan 1448 |
| This theorem is referenced by: nic-stdmp 1615 nic-luk1 1616 nic-luk2 1617 nic-luk3 1618 |
| Copyright terms: Public domain | W3C validator |