![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ndisj2 | Structured version Visualization version GIF version |
Description: A non disjointness condition. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
ndisj2.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
ndisj2 | ⊢ (¬ Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndisj2.1 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
2 | 1 | disjor 4634 | . . 3 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅)) |
3 | 2 | notbii 310 | . 2 ⊢ (¬ Disj 𝑥 ∈ 𝐴 𝐵 ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅)) |
4 | rexnal 2995 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ¬ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅)) | |
5 | rexnal 2995 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 ¬ (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ¬ ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅)) | |
6 | ioran 511 | . . . . . 6 ⊢ (¬ (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ (¬ 𝑥 = 𝑦 ∧ ¬ (𝐵 ∩ 𝐶) = ∅)) | |
7 | df-ne 2795 | . . . . . . 7 ⊢ (𝑥 ≠ 𝑦 ↔ ¬ 𝑥 = 𝑦) | |
8 | df-ne 2795 | . . . . . . 7 ⊢ ((𝐵 ∩ 𝐶) ≠ ∅ ↔ ¬ (𝐵 ∩ 𝐶) = ∅) | |
9 | 7, 8 | anbi12i 733 | . . . . . 6 ⊢ ((𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅) ↔ (¬ 𝑥 = 𝑦 ∧ ¬ (𝐵 ∩ 𝐶) = ∅)) |
10 | 6, 9 | bitr4i 267 | . . . . 5 ⊢ (¬ (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) |
11 | 10 | rexbii 3041 | . . . 4 ⊢ (∃𝑦 ∈ 𝐴 ¬ (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) |
12 | 5, 11 | bitr3i 266 | . . 3 ⊢ (¬ ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) |
13 | 12 | rexbii 3041 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ¬ ∀𝑦 ∈ 𝐴 (𝑥 = 𝑦 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) |
14 | 3, 4, 13 | 3bitr2i 288 | 1 ⊢ (¬ Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 ∧ (𝐵 ∩ 𝐶) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 ∩ cin 3573 ∅c0 3915 Disj wdisj 4620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rmo 2920 df-v 3202 df-dif 3577 df-in 3581 df-nul 3916 df-disj 4621 |
This theorem is referenced by: disjrnmpt2 39375 |
Copyright terms: Public domain | W3C validator |