| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > necon2i | Structured version Visualization version GIF version | ||
| Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) |
| Ref | Expression |
|---|---|
| necon2i.1 | ⊢ (𝐴 = 𝐵 → 𝐶 ≠ 𝐷) |
| Ref | Expression |
|---|---|
| necon2i | ⊢ (𝐶 = 𝐷 → 𝐴 ≠ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | necon2i.1 | . . 3 ⊢ (𝐴 = 𝐵 → 𝐶 ≠ 𝐷) | |
| 2 | 1 | neneqd 2799 | . 2 ⊢ (𝐴 = 𝐵 → ¬ 𝐶 = 𝐷) |
| 3 | 2 | necon2ai 2823 | 1 ⊢ (𝐶 = 𝐷 → 𝐴 ≠ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1483 ≠ wne 2794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-ne 2795 |
| This theorem is referenced by: cmpfi 21211 mcubic 24574 cubic2 24575 2sqlem11 25154 ovoliunnfl 33451 voliunnfl 33453 volsupnfl 33454 mncn0 37709 aaitgo 37732 |
| Copyright terms: Public domain | W3C validator |