Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  volsupnfl Structured version   Visualization version   GIF version

Theorem volsupnfl 33454
Description: volsup 23324 is incompatible with the Feferman-Levy model. (Contributed by Brendan Leahy, 2-Jan-2018.)
Hypothesis
Ref Expression
volsupnfl.0 ((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1))) → (vol‘ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < ))
Assertion
Ref Expression
volsupnfl ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Distinct variable group:   𝑓,𝑛,𝑥,𝐴

Proof of Theorem volsupnfl
Dummy variables 𝑔 𝑚 𝑙 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 unieq 4444 . . . . . . . . 9 (𝐴 = ∅ → 𝐴 = ∅)
2 uni0 4465 . . . . . . . . 9 ∅ = ∅
31, 2syl6eq 2672 . . . . . . . 8 (𝐴 = ∅ → 𝐴 = ∅)
43fveq2d 6195 . . . . . . 7 (𝐴 = ∅ → (vol‘ 𝐴) = (vol‘∅))
5 0mbl 23307 . . . . . . . . 9 ∅ ∈ dom vol
6 mblvol 23298 . . . . . . . . 9 (∅ ∈ dom vol → (vol‘∅) = (vol*‘∅))
75, 6ax-mp 5 . . . . . . . 8 (vol‘∅) = (vol*‘∅)
8 ovol0 23261 . . . . . . . 8 (vol*‘∅) = 0
97, 8eqtri 2644 . . . . . . 7 (vol‘∅) = 0
104, 9syl6req 2673 . . . . . 6 (𝐴 = ∅ → 0 = (vol‘ 𝐴))
1110a1d 25 . . . . 5 (𝐴 = ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴)))
12 reldom 7961 . . . . . . . . . . 11 Rel ≼
1312brrelexi 5158 . . . . . . . . . 10 (𝐴 ≼ ℕ → 𝐴 ∈ V)
14 0sdomg 8089 . . . . . . . . . 10 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
1513, 14syl 17 . . . . . . . . 9 (𝐴 ≼ ℕ → (∅ ≺ 𝐴𝐴 ≠ ∅))
1615biimparc 504 . . . . . . . 8 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∅ ≺ 𝐴)
17 fodomr 8111 . . . . . . . 8 ((∅ ≺ 𝐴𝐴 ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto𝐴)
1816, 17sylancom 701 . . . . . . 7 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ∃𝑔 𝑔:ℕ–onto𝐴)
19 unissb 4469 . . . . . . . . . . . . 13 ( 𝐴 ⊆ ℝ ↔ ∀𝑥𝐴 𝑥 ⊆ ℝ)
2019anbi1i 731 . . . . . . . . . . . 12 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
21 r19.26 3064 . . . . . . . . . . . 12 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) ↔ (∀𝑥𝐴 𝑥 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ))
2220, 21bitr4i 267 . . . . . . . . . . 11 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ))
23 ovolctb2 23260 . . . . . . . . . . . . 13 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (vol*‘𝑥) = 0)
24 nulmbl 23303 . . . . . . . . . . . . . 14 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → 𝑥 ∈ dom vol)
25 mblvol 23298 . . . . . . . . . . . . . . . 16 (𝑥 ∈ dom vol → (vol‘𝑥) = (vol*‘𝑥))
26 eqtr 2641 . . . . . . . . . . . . . . . . 17 (((vol‘𝑥) = (vol*‘𝑥) ∧ (vol*‘𝑥) = 0) → (vol‘𝑥) = 0)
2726expcom 451 . . . . . . . . . . . . . . . 16 ((vol*‘𝑥) = 0 → ((vol‘𝑥) = (vol*‘𝑥) → (vol‘𝑥) = 0))
2825, 27syl5 34 . . . . . . . . . . . . . . 15 ((vol*‘𝑥) = 0 → (𝑥 ∈ dom vol → (vol‘𝑥) = 0))
2928adantl 482 . . . . . . . . . . . . . 14 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → (𝑥 ∈ dom vol → (vol‘𝑥) = 0))
3024, 29jcai 559 . . . . . . . . . . . . 13 ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) = 0) → (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0))
3123, 30syldan 487 . . . . . . . . . . . 12 ((𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0))
3231ralimi 2952 . . . . . . . . . . 11 (∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0))
3322, 32sylbi 207 . . . . . . . . . 10 (( 𝐴 ⊆ ℝ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0))
3433ancoms 469 . . . . . . . . 9 ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0))
35 fzfi 12771 . . . . . . . . . . . . . . 15 (1...𝑚) ∈ Fin
36 fzssuz 12382 . . . . . . . . . . . . . . . . 17 (1...𝑚) ⊆ (ℤ‘1)
37 nnuz 11723 . . . . . . . . . . . . . . . . 17 ℕ = (ℤ‘1)
3836, 37sseqtr4i 3638 . . . . . . . . . . . . . . . 16 (1...𝑚) ⊆ ℕ
39 fof 6115 . . . . . . . . . . . . . . . . . . . 20 (𝑔:ℕ–onto𝐴𝑔:ℕ⟶𝐴)
4039ffvelrnda 6359 . . . . . . . . . . . . . . . . . . 19 ((𝑔:ℕ–onto𝐴𝑙 ∈ ℕ) → (𝑔𝑙) ∈ 𝐴)
41 eleq1 2689 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑔𝑙) → (𝑥 ∈ dom vol ↔ (𝑔𝑙) ∈ dom vol))
42 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = (𝑔𝑙) → (vol‘𝑥) = (vol‘(𝑔𝑙)))
4342eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = (𝑔𝑙) → ((vol‘𝑥) = 0 ↔ (vol‘(𝑔𝑙)) = 0))
4441, 43anbi12d 747 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (𝑔𝑙) → ((𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ↔ ((𝑔𝑙) ∈ dom vol ∧ (vol‘(𝑔𝑙)) = 0)))
4544rspccva 3308 . . . . . . . . . . . . . . . . . . . . 21 ((∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ∧ (𝑔𝑙) ∈ 𝐴) → ((𝑔𝑙) ∈ dom vol ∧ (vol‘(𝑔𝑙)) = 0))
4645simpld 475 . . . . . . . . . . . . . . . . . . . 20 ((∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ∧ (𝑔𝑙) ∈ 𝐴) → (𝑔𝑙) ∈ dom vol)
4746ancoms 469 . . . . . . . . . . . . . . . . . . 19 (((𝑔𝑙) ∈ 𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑔𝑙) ∈ dom vol)
4840, 47sylan 488 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ–onto𝐴𝑙 ∈ ℕ) ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑔𝑙) ∈ dom vol)
4948an32s 846 . . . . . . . . . . . . . . . . 17 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑙 ∈ ℕ) → (𝑔𝑙) ∈ dom vol)
5049ralrimiva 2966 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ ℕ (𝑔𝑙) ∈ dom vol)
51 ssralv 3666 . . . . . . . . . . . . . . . 16 ((1...𝑚) ⊆ ℕ → (∀𝑙 ∈ ℕ (𝑔𝑙) ∈ dom vol → ∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol))
5238, 50, 51mpsyl 68 . . . . . . . . . . . . . . 15 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol)
53 finiunmbl 23312 . . . . . . . . . . . . . . 15 (((1...𝑚) ∈ Fin ∧ ∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol) → 𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol)
5435, 52, 53sylancr 695 . . . . . . . . . . . . . 14 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → 𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol)
5554adantr 481 . . . . . . . . . . . . 13 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → 𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol)
56 eqid 2622 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))
5755, 56fmptd 6385 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)):ℕ⟶dom vol)
58 fzssp1 12384 . . . . . . . . . . . . . . 15 (1...𝑛) ⊆ (1...(𝑛 + 1))
59 iunss1 4532 . . . . . . . . . . . . . . 15 ((1...𝑛) ⊆ (1...(𝑛 + 1)) → 𝑙 ∈ (1...𝑛)(𝑔𝑙) ⊆ 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙))
6058, 59ax-mp 5 . . . . . . . . . . . . . 14 𝑙 ∈ (1...𝑛)(𝑔𝑙) ⊆ 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙)
61 oveq2 6658 . . . . . . . . . . . . . . . . 17 (𝑚 = 𝑛 → (1...𝑚) = (1...𝑛))
6261iuneq1d 4545 . . . . . . . . . . . . . . . 16 (𝑚 = 𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙) = 𝑙 ∈ (1...𝑛)(𝑔𝑙))
63 ovex 6678 . . . . . . . . . . . . . . . . 17 (1...𝑛) ∈ V
64 fvex 6201 . . . . . . . . . . . . . . . . 17 (𝑔𝑙) ∈ V
6563, 64iunex 7147 . . . . . . . . . . . . . . . 16 𝑙 ∈ (1...𝑛)(𝑔𝑙) ∈ V
6662, 56, 65fvmpt 6282 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) = 𝑙 ∈ (1...𝑛)(𝑔𝑙))
67 peano2nn 11032 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕ → (𝑛 + 1) ∈ ℕ)
68 oveq2 6658 . . . . . . . . . . . . . . . . . 18 (𝑚 = (𝑛 + 1) → (1...𝑚) = (1...(𝑛 + 1)))
6968iuneq1d 4545 . . . . . . . . . . . . . . . . 17 (𝑚 = (𝑛 + 1) → 𝑙 ∈ (1...𝑚)(𝑔𝑙) = 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙))
70 ovex 6678 . . . . . . . . . . . . . . . . . 18 (1...(𝑛 + 1)) ∈ V
7170, 64iunex 7147 . . . . . . . . . . . . . . . . 17 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙) ∈ V
7269, 56, 71fvmpt 6282 . . . . . . . . . . . . . . . 16 ((𝑛 + 1) ∈ ℕ → ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1)) = 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙))
7367, 72syl 17 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1)) = 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙))
7466, 73sseq12d 3634 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → (((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1)) ↔ 𝑙 ∈ (1...𝑛)(𝑔𝑙) ⊆ 𝑙 ∈ (1...(𝑛 + 1))(𝑔𝑙)))
7560, 74mpbiri 248 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1)))
7675rgen 2922 . . . . . . . . . . . 12 𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1))
77 nnex 11026 . . . . . . . . . . . . . 14 ℕ ∈ V
7877mptex 6486 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ∈ V
79 feq1 6026 . . . . . . . . . . . . . . 15 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (𝑓:ℕ⟶dom vol ↔ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)):ℕ⟶dom vol))
80 fveq1 6190 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (𝑓𝑛) = ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛))
81 fveq1 6190 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (𝑓‘(𝑛 + 1)) = ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1)))
8280, 81sseq12d 3634 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → ((𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1)) ↔ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1))))
8382ralbidv 2986 . . . . . . . . . . . . . . 15 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (∀𝑛 ∈ ℕ (𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1)) ↔ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1))))
8479, 83anbi12d 747 . . . . . . . . . . . . . 14 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → ((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1))) ↔ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)):ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1)))))
85 rneq 5351 . . . . . . . . . . . . . . . . 17 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → ran 𝑓 = ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
8685unieqd 4446 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → ran 𝑓 = ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
8786fveq2d 6195 . . . . . . . . . . . . . . 15 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (vol‘ ran 𝑓) = (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))))
8885imaeq2d 5466 . . . . . . . . . . . . . . . 16 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (vol “ ran 𝑓) = (vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))))
8988supeq1d 8352 . . . . . . . . . . . . . . 15 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → sup((vol “ ran 𝑓), ℝ*, < ) = sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < ))
9087, 89eqeq12d 2637 . . . . . . . . . . . . . 14 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → ((vol‘ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < ) ↔ (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < )))
9184, 90imbi12d 334 . . . . . . . . . . . . 13 (𝑓 = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) → (((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1))) → (vol‘ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < )) ↔ (((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)):ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1))) → (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < ))))
92 volsupnfl.0 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝑓𝑛) ⊆ (𝑓‘(𝑛 + 1))) → (vol‘ ran 𝑓) = sup((vol “ ran 𝑓), ℝ*, < ))
9378, 91, 92vtocl 3259 . . . . . . . . . . . 12 (((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)):ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘𝑛) ⊆ ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))‘(𝑛 + 1))) → (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < ))
9457, 76, 93sylancl 694 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < ))
95 df-iun 4522 . . . . . . . . . . . . . . . 16 𝑥 ∈ ℕ (𝑔𝑥) = {𝑛 ∣ ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥)}
96 eluzfz2 12349 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 ∈ (ℤ‘1) → 𝑥 ∈ (1...𝑥))
9796, 37eleq2s 2719 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℕ → 𝑥 ∈ (1...𝑥))
98 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑙 = 𝑥 → (𝑔𝑙) = (𝑔𝑥))
9998eleq2d 2687 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑙 = 𝑥 → (𝑛 ∈ (𝑔𝑙) ↔ 𝑛 ∈ (𝑔𝑥)))
10099rspcev 3309 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑥 ∈ (1...𝑥) ∧ 𝑛 ∈ (𝑔𝑥)) → ∃𝑙 ∈ (1...𝑥)𝑛 ∈ (𝑔𝑙))
10197, 100sylan 488 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℕ ∧ 𝑛 ∈ (𝑔𝑥)) → ∃𝑙 ∈ (1...𝑥)𝑛 ∈ (𝑔𝑙))
102 oveq2 6658 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 = 𝑥 → (1...𝑚) = (1...𝑥))
103102rexeqdv 3145 . . . . . . . . . . . . . . . . . . . . . 22 (𝑚 = 𝑥 → (∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙) ↔ ∃𝑙 ∈ (1...𝑥)𝑛 ∈ (𝑔𝑙)))
104103rspcev 3309 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥 ∈ ℕ ∧ ∃𝑙 ∈ (1...𝑥)𝑛 ∈ (𝑔𝑙)) → ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙))
105101, 104syldan 487 . . . . . . . . . . . . . . . . . . . 20 ((𝑥 ∈ ℕ ∧ 𝑛 ∈ (𝑔𝑥)) → ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙))
106105rexlimiva 3028 . . . . . . . . . . . . . . . . . . 19 (∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥) → ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙))
107 ssrexv 3667 . . . . . . . . . . . . . . . . . . . . . 22 ((1...𝑚) ⊆ ℕ → (∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙) → ∃𝑙 ∈ ℕ 𝑛 ∈ (𝑔𝑙)))
10838, 107ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙) → ∃𝑙 ∈ ℕ 𝑛 ∈ (𝑔𝑙))
10999cbvrexv 3172 . . . . . . . . . . . . . . . . . . . . 21 (∃𝑙 ∈ ℕ 𝑛 ∈ (𝑔𝑙) ↔ ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥))
110108, 109sylib 208 . . . . . . . . . . . . . . . . . . . 20 (∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙) → ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥))
111110rexlimivw 3029 . . . . . . . . . . . . . . . . . . 19 (∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙) → ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥))
112106, 111impbii 199 . . . . . . . . . . . . . . . . . 18 (∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥) ↔ ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙))
113 eliun 4524 . . . . . . . . . . . . . . . . . . 19 (𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙) ↔ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙))
114113rexbii 3041 . . . . . . . . . . . . . . . . . 18 (∃𝑚 ∈ ℕ 𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙) ↔ ∃𝑚 ∈ ℕ ∃𝑙 ∈ (1...𝑚)𝑛 ∈ (𝑔𝑙))
115112, 114bitr4i 267 . . . . . . . . . . . . . . . . 17 (∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥) ↔ ∃𝑚 ∈ ℕ 𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙))
116115abbii 2739 . . . . . . . . . . . . . . . 16 {𝑛 ∣ ∃𝑥 ∈ ℕ 𝑛 ∈ (𝑔𝑥)} = {𝑛 ∣ ∃𝑚 ∈ ℕ 𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙)}
11795, 116eqtri 2644 . . . . . . . . . . . . . . 15 𝑥 ∈ ℕ (𝑔𝑥) = {𝑛 ∣ ∃𝑚 ∈ ℕ 𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙)}
118 df-iun 4522 . . . . . . . . . . . . . . 15 𝑚 ∈ ℕ 𝑙 ∈ (1...𝑚)(𝑔𝑙) = {𝑛 ∣ ∃𝑚 ∈ ℕ 𝑛 𝑙 ∈ (1...𝑚)(𝑔𝑙)}
119 ovex 6678 . . . . . . . . . . . . . . . . 17 (1...𝑚) ∈ V
120119, 64iunex 7147 . . . . . . . . . . . . . . . 16 𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ V
121120dfiun3 5380 . . . . . . . . . . . . . . 15 𝑚 ∈ ℕ 𝑙 ∈ (1...𝑚)(𝑔𝑙) = ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))
122117, 118, 1213eqtr2i 2650 . . . . . . . . . . . . . 14 𝑥 ∈ ℕ (𝑔𝑥) = ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))
123 fofn 6117 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto𝐴𝑔 Fn ℕ)
124 fniunfv 6505 . . . . . . . . . . . . . . . 16 (𝑔 Fn ℕ → 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
125123, 124syl 17 . . . . . . . . . . . . . . 15 (𝑔:ℕ–onto𝐴 𝑥 ∈ ℕ (𝑔𝑥) = ran 𝑔)
126 forn 6118 . . . . . . . . . . . . . . . 16 (𝑔:ℕ–onto𝐴 → ran 𝑔 = 𝐴)
127126unieqd 4446 . . . . . . . . . . . . . . 15 (𝑔:ℕ–onto𝐴 ran 𝑔 = 𝐴)
128125, 127eqtrd 2656 . . . . . . . . . . . . . 14 (𝑔:ℕ–onto𝐴 𝑥 ∈ ℕ (𝑔𝑥) = 𝐴)
129122, 128syl5eqr 2670 . . . . . . . . . . . . 13 (𝑔:ℕ–onto𝐴 ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = 𝐴)
130129fveq2d 6195 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴 → (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (vol‘ 𝐴))
131130adantr 481 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol‘ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (vol‘ 𝐴))
132 rnco2 5642 . . . . . . . . . . . . . 14 ran (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
133 eqidd 2623 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
134 volf 23297 . . . . . . . . . . . . . . . . . . 19 vol:dom vol⟶(0[,]+∞)
135134a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → vol:dom vol⟶(0[,]+∞))
136135feqmptd 6249 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → vol = (𝑛 ∈ dom vol ↦ (vol‘𝑛)))
137 fveq2 6191 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑙 ∈ (1...𝑚)(𝑔𝑙) → (vol‘𝑛) = (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
13855, 133, 136, 137fmptco 6396 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (𝑚 ∈ ℕ ↦ (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙))))
139 mblvol 23298 . . . . . . . . . . . . . . . . . . . 20 ( 𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol → (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
14055, 139syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
141 mblss 23299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ dom vol → 𝑥 ⊆ ℝ)
142141adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) → 𝑥 ⊆ ℝ)
14325eqeq1d 2624 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 ∈ dom vol → ((vol‘𝑥) = 0 ↔ (vol*‘𝑥) = 0))
144 0re 10040 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 0 ∈ ℝ
145 eleq1a 2696 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (0 ∈ ℝ → ((vol*‘𝑥) = 0 → (vol*‘𝑥) ∈ ℝ))
146144, 145ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((vol*‘𝑥) = 0 → (vol*‘𝑥) ∈ ℝ)
147143, 146syl6bi 243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 ∈ dom vol → ((vol‘𝑥) = 0 → (vol*‘𝑥) ∈ ℝ))
148147imp 445 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) → (vol*‘𝑥) ∈ ℝ)
149142, 148jca 554 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) → (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ))
150149ralimi 2952 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ))
151150adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ))
152 ssid 3624 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ℕ ⊆ ℕ
153 sseq1 3626 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = (𝑔𝑙) → (𝑥 ⊆ ℝ ↔ (𝑔𝑙) ⊆ ℝ))
154 fveq2 6191 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝑥 = (𝑔𝑙) → (vol*‘𝑥) = (vol*‘(𝑔𝑙)))
155154eleq1d 2686 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑥 = (𝑔𝑙) → ((vol*‘𝑥) ∈ ℝ ↔ (vol*‘(𝑔𝑙)) ∈ ℝ))
156153, 155anbi12d 747 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑥 = (𝑔𝑙) → ((𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ↔ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ)))
157156ralima 6498 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑔 Fn ℕ ∧ ℕ ⊆ ℕ) → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ↔ ∀𝑙 ∈ ℕ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ)))
158123, 152, 157sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ↔ ∀𝑙 ∈ ℕ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ)))
159 foima 6120 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑔:ℕ–onto𝐴 → (𝑔 “ ℕ) = 𝐴)
160159raleqdv 3144 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑔:ℕ–onto𝐴 → (∀𝑥 ∈ (𝑔 “ ℕ)(𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)))
161158, 160bitr3d 270 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑔:ℕ–onto𝐴 → (∀𝑙 ∈ ℕ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)))
162161adantr 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (∀𝑙 ∈ ℕ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ) ↔ ∀𝑥𝐴 (𝑥 ⊆ ℝ ∧ (vol*‘𝑥) ∈ ℝ)))
163151, 162mpbird 247 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ ℕ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ))
164 ssralv 3666 . . . . . . . . . . . . . . . . . . . . . . . 24 ((1...𝑚) ⊆ ℕ → (∀𝑙 ∈ ℕ ((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ) → ∀𝑙 ∈ (1...𝑚)((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ)))
16538, 163, 164mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ (1...𝑚)((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ))
166165adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → ∀𝑙 ∈ (1...𝑚)((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ))
167 ovolfiniun 23269 . . . . . . . . . . . . . . . . . . . . . 22 (((1...𝑚) ∈ Fin ∧ ∀𝑙 ∈ (1...𝑚)((𝑔𝑙) ⊆ ℝ ∧ (vol*‘(𝑔𝑙)) ∈ ℝ)) → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ≤ Σ𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)))
16835, 166, 167sylancr 695 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ≤ Σ𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)))
169 mblvol 23298 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑔𝑙) ∈ dom vol → (vol‘(𝑔𝑙)) = (vol*‘(𝑔𝑙)))
17049, 169syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑙 ∈ ℕ) → (vol‘(𝑔𝑙)) = (vol*‘(𝑔𝑙)))
17145simprd 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ∧ (𝑔𝑙) ∈ 𝐴) → (vol‘(𝑔𝑙)) = 0)
17240, 171sylan2 491 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) ∧ (𝑔:ℕ–onto𝐴𝑙 ∈ ℕ)) → (vol‘(𝑔𝑙)) = 0)
173172ancoms 469 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝑔:ℕ–onto𝐴𝑙 ∈ ℕ) ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol‘(𝑔𝑙)) = 0)
174173an32s 846 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑙 ∈ ℕ) → (vol‘(𝑔𝑙)) = 0)
175170, 174eqtr3d 2658 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑙 ∈ ℕ) → (vol*‘(𝑔𝑙)) = 0)
176175ralrimiva 2966 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ ℕ (vol*‘(𝑔𝑙)) = 0)
177 ssralv 3666 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((1...𝑚) ⊆ ℕ → (∀𝑙 ∈ ℕ (vol*‘(𝑔𝑙)) = 0 → ∀𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)) = 0))
17838, 176, 177mpsyl 68 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)) = 0)
179178adantr 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → ∀𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)) = 0)
180179sumeq2d 14432 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → Σ𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)) = Σ𝑙 ∈ (1...𝑚)0)
18135olci 406 . . . . . . . . . . . . . . . . . . . . . . 23 ((1...𝑚) ⊆ (ℤ‘1) ∨ (1...𝑚) ∈ Fin)
182 sumz 14453 . . . . . . . . . . . . . . . . . . . . . . 23 (((1...𝑚) ⊆ (ℤ‘1) ∨ (1...𝑚) ∈ Fin) → Σ𝑙 ∈ (1...𝑚)0 = 0)
183181, 182ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 Σ𝑙 ∈ (1...𝑚)0 = 0
184180, 183syl6eq 2672 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → Σ𝑙 ∈ (1...𝑚)(vol*‘(𝑔𝑙)) = 0)
185168, 184breqtrd 4679 . . . . . . . . . . . . . . . . . . . 20 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ≤ 0)
186 mblss 23299 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑔𝑙) ∈ dom vol → (𝑔𝑙) ⊆ ℝ)
187186ralimi 2952 . . . . . . . . . . . . . . . . . . . . . . . 24 (∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ∈ dom vol → ∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ)
18852, 187syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ)
189 iunss 4561 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ ↔ ∀𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ)
190188, 189sylibr 224 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → 𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ)
191190adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → 𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ)
192 ovolge0 23249 . . . . . . . . . . . . . . . . . . . . 21 ( 𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ → 0 ≤ (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
193191, 192syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → 0 ≤ (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))
194 ovolcl 23246 . . . . . . . . . . . . . . . . . . . . . . 23 ( 𝑙 ∈ (1...𝑚)(𝑔𝑙) ⊆ ℝ → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ∈ ℝ*)
195190, 194syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ∈ ℝ*)
196195adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ∈ ℝ*)
197 0xr 10086 . . . . . . . . . . . . . . . . . . . . 21 0 ∈ ℝ*
198 xrletri3 11985 . . . . . . . . . . . . . . . . . . . . 21 (((vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = 0 ↔ ((vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))))
199196, 197, 198sylancl 694 . . . . . . . . . . . . . . . . . . . 20 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → ((vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = 0 ↔ ((vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ≤ 0 ∧ 0 ≤ (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)))))
200185, 193, 199mpbir2and 957 . . . . . . . . . . . . . . . . . . 19 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol*‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = 0)
201140, 200eqtrd 2656 . . . . . . . . . . . . . . . . . 18 (((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) ∧ 𝑚 ∈ ℕ) → (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) = 0)
202201mpteq2dva 4744 . . . . . . . . . . . . . . . . 17 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑚 ∈ ℕ ↦ (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (𝑚 ∈ ℕ ↦ 0))
203 fconstmpt 5163 . . . . . . . . . . . . . . . . 17 (ℕ × {0}) = (𝑚 ∈ ℕ ↦ 0)
204202, 203syl6eqr 2674 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (𝑚 ∈ ℕ ↦ (vol‘ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (ℕ × {0}))
205138, 204eqtrd 2656 . . . . . . . . . . . . . . 15 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (ℕ × {0}))
206 frn 6053 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)):ℕ⟶dom vol → ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ⊆ dom vol)
207 ffn 6045 . . . . . . . . . . . . . . . . . . 19 (vol:dom vol⟶(0[,]+∞) → vol Fn dom vol)
208134, 207ax-mp 5 . . . . . . . . . . . . . . . . . 18 vol Fn dom vol
209120, 56fnmpti 6022 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) Fn ℕ
210 fnco 5999 . . . . . . . . . . . . . . . . . 18 ((vol Fn dom vol ∧ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) Fn ℕ ∧ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ⊆ dom vol) → (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) Fn ℕ)
211208, 209, 210mp3an12 1414 . . . . . . . . . . . . . . . . 17 (ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙)) ⊆ dom vol → (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) Fn ℕ)
21257, 206, 2113syl 18 . . . . . . . . . . . . . . . 16 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) Fn ℕ)
213 1nn 11031 . . . . . . . . . . . . . . . . 17 1 ∈ ℕ
214213ne0ii 3923 . . . . . . . . . . . . . . . 16 ℕ ≠ ∅
215 fconst5 6471 . . . . . . . . . . . . . . . 16 (((vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) Fn ℕ ∧ ℕ ≠ ∅) → ((vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (ℕ × {0}) ↔ ran (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = {0}))
216212, 214, 215sylancl 694 . . . . . . . . . . . . . . 15 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ((vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = (ℕ × {0}) ↔ ran (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = {0}))
217205, 216mpbid 222 . . . . . . . . . . . . . 14 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → ran (vol ∘ (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = {0})
218132, 217syl5eqr 2670 . . . . . . . . . . . . 13 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → (vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))) = {0})
219218supeq1d 8352 . . . . . . . . . . . 12 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < ) = sup({0}, ℝ*, < ))
220 xrltso 11974 . . . . . . . . . . . . 13 < Or ℝ*
221 supsn 8378 . . . . . . . . . . . . 13 (( < Or ℝ* ∧ 0 ∈ ℝ*) → sup({0}, ℝ*, < ) = 0)
222220, 197, 221mp2an 708 . . . . . . . . . . . 12 sup({0}, ℝ*, < ) = 0
223219, 222syl6eq 2672 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → sup((vol “ ran (𝑚 ∈ ℕ ↦ 𝑙 ∈ (1...𝑚)(𝑔𝑙))), ℝ*, < ) = 0)
22494, 131, 2233eqtr3rd 2665 . . . . . . . . . 10 ((𝑔:ℕ–onto𝐴 ∧ ∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0)) → 0 = (vol‘ 𝐴))
225224ex 450 . . . . . . . . 9 (𝑔:ℕ–onto𝐴 → (∀𝑥𝐴 (𝑥 ∈ dom vol ∧ (vol‘𝑥) = 0) → 0 = (vol‘ 𝐴)))
22634, 225syl5 34 . . . . . . . 8 (𝑔:ℕ–onto𝐴 → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
227226exlimiv 1858 . . . . . . 7 (∃𝑔 𝑔:ℕ–onto𝐴 → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
22818, 227syl 17 . . . . . 6 ((𝐴 ≠ ∅ ∧ 𝐴 ≼ ℕ) → ((∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ) → 0 = (vol‘ 𝐴)))
229228expimpd 629 . . . . 5 (𝐴 ≠ ∅ → ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴)))
23011, 229pm2.61ine 2877 . . . 4 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 0 = (vol‘ 𝐴))
231 renepnf 10087 . . . . . . 7 (0 ∈ ℝ → 0 ≠ +∞)
232144, 231mp1i 13 . . . . . 6 ( 𝐴 = ℝ → 0 ≠ +∞)
233 fveq2 6191 . . . . . . 7 ( 𝐴 = ℝ → (vol‘ 𝐴) = (vol‘ℝ))
234 rembl 23308 . . . . . . . . 9 ℝ ∈ dom vol
235 mblvol 23298 . . . . . . . . 9 (ℝ ∈ dom vol → (vol‘ℝ) = (vol*‘ℝ))
236234, 235ax-mp 5 . . . . . . . 8 (vol‘ℝ) = (vol*‘ℝ)
237 ovolre 23293 . . . . . . . 8 (vol*‘ℝ) = +∞
238236, 237eqtri 2644 . . . . . . 7 (vol‘ℝ) = +∞
239233, 238syl6eq 2672 . . . . . 6 ( 𝐴 = ℝ → (vol‘ 𝐴) = +∞)
240232, 239neeqtrrd 2868 . . . . 5 ( 𝐴 = ℝ → 0 ≠ (vol‘ 𝐴))
241240necon2i 2828 . . . 4 (0 = (vol‘ 𝐴) → 𝐴 ≠ ℝ)
242230, 241syl 17 . . 3 ((𝐴 ≼ ℕ ∧ (∀𝑥𝐴 𝑥 ≼ ℕ ∧ 𝐴 ⊆ ℝ)) → 𝐴 ≠ ℝ)
243242expr 643 . 2 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → ( 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ))
244 eqimss 3657 . . 3 ( 𝐴 = ℝ → 𝐴 ⊆ ℝ)
245244necon3bi 2820 . 2 𝐴 ⊆ ℝ → 𝐴 ≠ ℝ)
246243, 245pm2.61d1 171 1 ((𝐴 ≼ ℕ ∧ ∀𝑥𝐴 𝑥 ≼ ℕ) → 𝐴 ≠ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384   = wceq 1483  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  wrex 2913  Vcvv 3200  wss 3574  c0 3915  {csn 4177   cuni 4436   ciun 4520   class class class wbr 4653  cmpt 4729   Or wor 5034   × cxp 5112  dom cdm 5114  ran crn 5115  cima 5117  ccom 5118   Fn wfn 5883  wf 5884  ontowfo 5886  cfv 5888  (class class class)co 6650  cdom 7953  csdm 7954  Fincfn 7955  supcsup 8346  cr 9935  0cc0 9936  1c1 9937   + caddc 9939  +∞cpnf 10071  *cxr 10073   < clt 10074  cle 10075  cn 11020  cuz 11687  [,]cicc 12178  ...cfz 12326  Σcsu 14416  vol*covol 23231  volcvol 23232
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-pre-sup 10014
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-of 6897  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-2o 7561  df-oadd 7564  df-er 7742  df-map 7859  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-fi 8317  df-sup 8348  df-inf 8349  df-oi 8415  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-3 11080  df-n0 11293  df-z 11378  df-uz 11688  df-q 11789  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-ioo 12179  df-ico 12181  df-icc 12182  df-fz 12327  df-fzo 12466  df-fl 12593  df-seq 12802  df-exp 12861  df-hash 13118  df-cj 13839  df-re 13840  df-im 13841  df-sqrt 13975  df-abs 13976  df-clim 14219  df-sum 14417  df-rest 16083  df-topgen 16104  df-psmet 19738  df-xmet 19739  df-met 19740  df-bl 19741  df-mopn 19742  df-top 20699  df-topon 20716  df-bases 20750  df-cmp 21190  df-ovol 23233  df-vol 23234
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator