![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > necon2i | Structured version Visualization version Unicode version |
Description: Contrapositive inference for inequality. (Contributed by NM, 18-Mar-2007.) |
Ref | Expression |
---|---|
necon2i.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
necon2i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | necon2i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | neneqd 2799 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | necon2ai 2823 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-ne 2795 |
This theorem is referenced by: cmpfi 21211 mcubic 24574 cubic2 24575 2sqlem11 25154 ovoliunnfl 33451 voliunnfl 33453 volsupnfl 33454 mncn0 37709 aaitgo 37732 |
Copyright terms: Public domain | W3C validator |