| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nelpri | Structured version Visualization version GIF version | ||
| Description: If an element doesn't match the items in an unordered pair, it is not in the unordered pair. (Contributed by David A. Wheeler, 10-May-2015.) |
| Ref | Expression |
|---|---|
| nelpri.1 | ⊢ 𝐴 ≠ 𝐵 |
| nelpri.2 | ⊢ 𝐴 ≠ 𝐶 |
| Ref | Expression |
|---|---|
| nelpri | ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nelpri.1 | . 2 ⊢ 𝐴 ≠ 𝐵 | |
| 2 | nelpri.2 | . 2 ⊢ 𝐴 ≠ 𝐶 | |
| 3 | neanior 2886 | . . 3 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) ↔ ¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 4 | elpri 4197 | . . . 4 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 5 | 4 | con3i 150 | . . 3 ⊢ (¬ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| 6 | 3, 5 | sylbi 207 | . 2 ⊢ ((𝐴 ≠ 𝐵 ∧ 𝐴 ≠ 𝐶) → ¬ 𝐴 ∈ {𝐵, 𝐶}) |
| 7 | 1, 2, 6 | mp2an 708 | 1 ⊢ ¬ 𝐴 ∈ {𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 {cpr 4179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: prneli 4202 ex-dif 27280 ex-in 27282 ex-pss 27285 ex-res 27298 ex-hash 27310 |
| Copyright terms: Public domain | W3C validator |