![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ex-res | Structured version Visualization version GIF version |
Description: Example for df-res 5126. Example by David A. Wheeler. (Contributed by Mario Carneiro, 7-May-2015.) |
Ref | Expression |
---|---|
ex-res | ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 473 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐹 = {〈2, 6〉, 〈3, 9〉}) | |
2 | df-pr 4180 | . . . . 5 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
3 | 1, 2 | syl6eq 2672 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐹 = ({〈2, 6〉} ∪ {〈3, 9〉})) |
4 | 3 | reseq1d 5395 | . . 3 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({〈2, 6〉} ∪ {〈3, 9〉}) ↾ 𝐵)) |
5 | resundir 5411 | . . 3 ⊢ (({〈2, 6〉} ∪ {〈3, 9〉}) ↾ 𝐵) = (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) | |
6 | 4, 5 | syl6eq 2672 | . 2 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵))) |
7 | 2re 11090 | . . . . . . 7 ⊢ 2 ∈ ℝ | |
8 | 7 | elexi 3213 | . . . . . 6 ⊢ 2 ∈ V |
9 | 6re 11101 | . . . . . . 7 ⊢ 6 ∈ ℝ | |
10 | 9 | elexi 3213 | . . . . . 6 ⊢ 6 ∈ V |
11 | 8, 10 | relsnop 5224 | . . . . 5 ⊢ Rel {〈2, 6〉} |
12 | dmsnopss 5607 | . . . . . 6 ⊢ dom {〈2, 6〉} ⊆ {2} | |
13 | snsspr2 4346 | . . . . . . 7 ⊢ {2} ⊆ {1, 2} | |
14 | simpr 477 | . . . . . . 7 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → 𝐵 = {1, 2}) | |
15 | 13, 14 | syl5sseqr 3654 | . . . . . 6 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → {2} ⊆ 𝐵) |
16 | 12, 15 | syl5ss 3614 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → dom {〈2, 6〉} ⊆ 𝐵) |
17 | relssres 5437 | . . . . 5 ⊢ ((Rel {〈2, 6〉} ∧ dom {〈2, 6〉} ⊆ 𝐵) → ({〈2, 6〉} ↾ 𝐵) = {〈2, 6〉}) | |
18 | 11, 16, 17 | sylancr 695 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ({〈2, 6〉} ↾ 𝐵) = {〈2, 6〉}) |
19 | 1re 10039 | . . . . . . . 8 ⊢ 1 ∈ ℝ | |
20 | 1lt3 11196 | . . . . . . . 8 ⊢ 1 < 3 | |
21 | 19, 20 | gtneii 10149 | . . . . . . 7 ⊢ 3 ≠ 1 |
22 | 2lt3 11195 | . . . . . . . 8 ⊢ 2 < 3 | |
23 | 7, 22 | gtneii 10149 | . . . . . . 7 ⊢ 3 ≠ 2 |
24 | 21, 23 | nelpri 4201 | . . . . . 6 ⊢ ¬ 3 ∈ {1, 2} |
25 | 14 | eleq2d 2687 | . . . . . 6 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (3 ∈ 𝐵 ↔ 3 ∈ {1, 2})) |
26 | 24, 25 | mtbiri 317 | . . . . 5 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ¬ 3 ∈ 𝐵) |
27 | ressnop0 6420 | . . . . 5 ⊢ (¬ 3 ∈ 𝐵 → ({〈3, 9〉} ↾ 𝐵) = ∅) | |
28 | 26, 27 | syl 17 | . . . 4 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → ({〈3, 9〉} ↾ 𝐵) = ∅) |
29 | 18, 28 | uneq12d 3768 | . . 3 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) = ({〈2, 6〉} ∪ ∅)) |
30 | un0 3967 | . . 3 ⊢ ({〈2, 6〉} ∪ ∅) = {〈2, 6〉} | |
31 | 29, 30 | syl6eq 2672 | . 2 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (({〈2, 6〉} ↾ 𝐵) ∪ ({〈3, 9〉} ↾ 𝐵)) = {〈2, 6〉}) |
32 | 6, 31 | eqtrd 2656 | 1 ⊢ ((𝐹 = {〈2, 6〉, 〈3, 9〉} ∧ 𝐵 = {1, 2}) → (𝐹 ↾ 𝐵) = {〈2, 6〉}) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∪ cun 3572 ⊆ wss 3574 ∅c0 3915 {csn 4177 {cpr 4179 〈cop 4183 dom cdm 5114 ↾ cres 5116 Rel wrel 5119 ℝcr 9935 1c1 9937 2c2 11070 3c3 11071 6c6 11074 9c9 11077 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-resscn 9993 ax-1cn 9994 ax-icn 9995 ax-addcl 9996 ax-addrcl 9997 ax-mulcl 9998 ax-mulrcl 9999 ax-mulcom 10000 ax-addass 10001 ax-mulass 10002 ax-distr 10003 ax-i2m1 10004 ax-1ne0 10005 ax-1rid 10006 ax-rnegex 10007 ax-rrecex 10008 ax-cnre 10009 ax-pre-lttri 10010 ax-pre-lttrn 10011 ax-pre-ltadd 10012 ax-pre-mulgt0 10013 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 df-pnf 10076 df-mnf 10077 df-xr 10078 df-ltxr 10079 df-le 10080 df-sub 10268 df-neg 10269 df-2 11079 df-3 11080 df-4 11081 df-5 11082 df-6 11083 |
This theorem is referenced by: ex-ima 27299 |
Copyright terms: Public domain | W3C validator |