| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nf4 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of non-freeness. This definition uses only primitive symbols. (Contributed by BJ, 16-Sep-2021.) |
| Ref | Expression |
|---|---|
| nf4 | ⊢ (Ⅎ𝑥𝜑 ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nf3 1712 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
| 2 | df-or 385 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑)) | |
| 3 | 1, 2 | bitri 264 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ (¬ ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∀wal 1481 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: nfimdOLDOLD 1824 |
| Copyright terms: Public domain | W3C validator |