| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfimdOLDOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete proof of nfimd 1823 as of 3-Nov-2021. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 30-Dec-2017.) df-nf 1710 changed. (Revised by Wolf Lammen, 18-Sep-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| nfimd.1 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| nfimd.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| Ref | Expression |
|---|---|
| nfimdOLDOLD | ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.35 1805 | . . 3 ⊢ (∃𝑥(𝜓 → 𝜒) ↔ (∀𝑥𝜓 → ∃𝑥𝜒)) | |
| 2 | nfimd.1 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 3 | nf4 1713 | . . . . . 6 ⊢ (Ⅎ𝑥𝜓 ↔ (¬ ∀𝑥𝜓 → ∀𝑥 ¬ 𝜓)) | |
| 4 | 2, 3 | sylib 208 | . . . . 5 ⊢ (𝜑 → (¬ ∀𝑥𝜓 → ∀𝑥 ¬ 𝜓)) |
| 5 | pm2.21 120 | . . . . . 6 ⊢ (¬ 𝜓 → (𝜓 → 𝜒)) | |
| 6 | 5 | alimi 1739 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜓 → ∀𝑥(𝜓 → 𝜒)) |
| 7 | 4, 6 | syl6 35 | . . . 4 ⊢ (𝜑 → (¬ ∀𝑥𝜓 → ∀𝑥(𝜓 → 𝜒))) |
| 8 | nfimd.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 9 | 8 | nfrd 1717 | . . . . 5 ⊢ (𝜑 → (∃𝑥𝜒 → ∀𝑥𝜒)) |
| 10 | ala1 1741 | . . . . 5 ⊢ (∀𝑥𝜒 → ∀𝑥(𝜓 → 𝜒)) | |
| 11 | 9, 10 | syl6 35 | . . . 4 ⊢ (𝜑 → (∃𝑥𝜒 → ∀𝑥(𝜓 → 𝜒))) |
| 12 | 7, 11 | jad 174 | . . 3 ⊢ (𝜑 → ((∀𝑥𝜓 → ∃𝑥𝜒) → ∀𝑥(𝜓 → 𝜒))) |
| 13 | 1, 12 | syl5bi 232 | . 2 ⊢ (𝜑 → (∃𝑥(𝜓 → 𝜒) → ∀𝑥(𝜓 → 𝜒))) |
| 14 | 13 | nfd 1716 | 1 ⊢ (𝜑 → Ⅎ𝑥(𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 ∃wex 1704 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |