| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfci | Structured version Visualization version GIF version | ||
| Description: Deduce that a class 𝐴 does not have 𝑥 free in it. (Contributed by Mario Carneiro, 11-Aug-2016.) |
| Ref | Expression |
|---|---|
| nfci.1 | ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| Ref | Expression |
|---|---|
| nfci | ⊢ Ⅎ𝑥𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-nfc 2753 | . 2 ⊢ (Ⅎ𝑥𝐴 ↔ ∀𝑦Ⅎ𝑥 𝑦 ∈ 𝐴) | |
| 2 | nfci.1 | . 2 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 | |
| 3 | 1, 2 | mpgbir 1726 | 1 ⊢ Ⅎ𝑥𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1708 ∈ wcel 1990 Ⅎwnfc 2751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 |
| This theorem depends on definitions: df-bi 197 df-nfc 2753 |
| This theorem is referenced by: nfcii 2755 nfcv 2764 nfab1 2766 nfab 2769 fpwrelmap 29508 esumfzf 30131 bj-nfab1 32785 fsumiunss 39807 climsuse 39840 climinff 39843 fnlimfvre 39906 limsupre3uzlem 39967 pimdecfgtioc 40925 pimincfltioc 40926 smfmullem4 41001 smflimsupmpt 41035 |
| Copyright terms: Public domain | W3C validator |