![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfci | Structured version Visualization version Unicode version |
Description: Deduce that a class ![]() ![]() |
Ref | Expression |
---|---|
nfci.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nfci |
![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-nfc 2753 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nfci.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | mpgbir 1726 |
1
![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 |
This theorem depends on definitions: df-bi 197 df-nfc 2753 |
This theorem is referenced by: nfcii 2755 nfcv 2764 nfab1 2766 nfab 2769 fpwrelmap 29508 esumfzf 30131 bj-nfab1 32785 fsumiunss 39807 climsuse 39840 climinff 39843 fnlimfvre 39906 limsupre3uzlem 39967 pimdecfgtioc 40925 pimincfltioc 40926 smfmullem4 41001 smflimsupmpt 41035 |
Copyright terms: Public domain | W3C validator |