MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfci Structured version   Visualization version   Unicode version

Theorem nfci 2754
Description: Deduce that a class  A does not have  x free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfci.1  |-  F/ x  y  e.  A
Assertion
Ref Expression
nfci  |-  F/_ x A
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem nfci
StepHypRef Expression
1 df-nfc 2753 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
2 nfci.1 . 2  |-  F/ x  y  e.  A
31, 2mpgbir 1726 1  |-  F/_ x A
Colors of variables: wff setvar class
Syntax hints:   F/wnf 1708    e. wcel 1990   F/_wnfc 2751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722
This theorem depends on definitions:  df-bi 197  df-nfc 2753
This theorem is referenced by:  nfcii  2755  nfcv  2764  nfab1  2766  nfab  2769  fpwrelmap  29508  esumfzf  30131  bj-nfab1  32785  fsumiunss  39807  climsuse  39840  climinff  39843  fnlimfvre  39906  limsupre3uzlem  39967  pimdecfgtioc  40925  pimincfltioc  40926  smfmullem4  41001  smflimsupmpt  41035
  Copyright terms: Public domain W3C validator