![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcrd | Structured version Visualization version GIF version |
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.) |
Ref | Expression |
---|---|
nfeqd.1 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
Ref | Expression |
---|---|
nfcrd | ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfeqd.1 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
2 | nfcr 2756 | . 2 ⊢ (Ⅎ𝑥𝐴 → Ⅎ𝑥 𝑦 ∈ 𝐴) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → Ⅎ𝑥 𝑦 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1708 ∈ wcel 1990 Ⅎwnfc 2751 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 |
This theorem depends on definitions: df-bi 197 df-ex 1705 df-nfc 2753 |
This theorem is referenced by: nfeqd 2772 nfeld 2773 dvelimdc 2786 nfcsbd 3550 nfifd 4114 axextnd 9413 axrepndlem1 9414 axunndlem1 9417 axregnd 9426 axextdist 31705 nfintd 42420 nfiund 42421 |
Copyright terms: Public domain | W3C validator |