MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrd Structured version   Visualization version   Unicode version

Theorem nfcrd 2771
Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfeqd.1  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfcrd  |-  ( ph  ->  F/ x  y  e.  A )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem nfcrd
StepHypRef Expression
1 nfeqd.1 . 2  |-  ( ph  -> 
F/_ x A )
2 nfcr 2756 . 2  |-  ( F/_ x A  ->  F/ x  y  e.  A )
31, 2syl 17 1  |-  ( ph  ->  F/ x  y  e.  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4   F/wnf 1708    e. wcel 1990   F/_wnfc 2751
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-ex 1705  df-nfc 2753
This theorem is referenced by:  nfeqd  2772  nfeld  2773  dvelimdc  2786  nfcsbd  3550  nfifd  4114  axextnd  9413  axrepndlem1  9414  axunndlem1  9417  axregnd  9426  axextdist  31705  nfintd  42420  nfiund  42421
  Copyright terms: Public domain W3C validator