Proof of Theorem nfimt
| Step | Hyp | Ref
| Expression |
| 1 | | 19.35 1805 |
. . 3
⊢
(∃𝑥(𝜑 → 𝜓) ↔ (∀𝑥𝜑 → ∃𝑥𝜓)) |
| 2 | | df-nf 1710 |
. . . . . . 7
⊢
(Ⅎ𝑥𝜑 ↔ (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 3 | 2 | biimpi 206 |
. . . . . 6
⊢
(Ⅎ𝑥𝜑 → (∃𝑥𝜑 → ∀𝑥𝜑)) |
| 4 | 3 | imim1d 82 |
. . . . 5
⊢
(Ⅎ𝑥𝜑 → ((∀𝑥𝜑 → ∃𝑥𝜓) → (∃𝑥𝜑 → ∃𝑥𝜓))) |
| 5 | | df-nf 1710 |
. . . . . . 7
⊢
(Ⅎ𝑥𝜓 ↔ (∃𝑥𝜓 → ∀𝑥𝜓)) |
| 6 | 5 | biimpi 206 |
. . . . . 6
⊢
(Ⅎ𝑥𝜓 → (∃𝑥𝜓 → ∀𝑥𝜓)) |
| 7 | 6 | imim2d 57 |
. . . . 5
⊢
(Ⅎ𝑥𝜓 → ((∃𝑥𝜑 → ∃𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓))) |
| 8 | 4, 7 | syl9 77 |
. . . 4
⊢
(Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → ((∀𝑥𝜑 → ∃𝑥𝜓) → (∃𝑥𝜑 → ∀𝑥𝜓)))) |
| 9 | | 19.38 1766 |
. . . 4
⊢
((∃𝑥𝜑 → ∀𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)) |
| 10 | 8, 9 | syl8 76 |
. . 3
⊢
(Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → ((∀𝑥𝜑 → ∃𝑥𝜓) → ∀𝑥(𝜑 → 𝜓)))) |
| 11 | 1, 10 | syl7bi 245 |
. 2
⊢
(Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → (∃𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓)))) |
| 12 | | df-nf 1710 |
. 2
⊢
(Ⅎ𝑥(𝜑 → 𝜓) ↔ (∃𝑥(𝜑 → 𝜓) → ∀𝑥(𝜑 → 𝜓))) |
| 13 | 11, 12 | syl6ibr 242 |
1
⊢
(Ⅎ𝑥𝜑 → (Ⅎ𝑥𝜓 → Ⅎ𝑥(𝜑 → 𝜓))) |