| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-dvelimdv1 | Structured version Visualization version GIF version | ||
| Description: Curried (exported) form of bj-dvelimdv 32834. (Contributed by BJ, 20-Oct-2021.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-dvelimdv.nf | ⊢ Ⅎ𝑥𝜑 |
| bj-dvelimdv.nf1 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| bj-dvelimdv.is | ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| bj-dvelimdv1 | ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeqf2 2297 | . . . 4 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥 𝑧 = 𝑦) | |
| 2 | bj-dvelimdv.nf1 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 3 | nfimt 1821 | . . . 4 ⊢ (Ⅎ𝑥 𝑧 = 𝑦 → (Ⅎ𝑥𝜒 → Ⅎ𝑥(𝑧 = 𝑦 → 𝜒))) | |
| 4 | 1, 2, 3 | syl2imc 41 | . . 3 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥(𝑧 = 𝑦 → 𝜒))) |
| 5 | 4 | alrimdv 1857 | . 2 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜒))) |
| 6 | bj-nfalt 32702 | . 2 ⊢ (∀𝑧Ⅎ𝑥(𝑧 = 𝑦 → 𝜒) → Ⅎ𝑥∀𝑧(𝑧 = 𝑦 → 𝜒)) | |
| 7 | bj-dvelimdv.is | . . . 4 ⊢ (𝑧 = 𝑦 → (𝜒 ↔ 𝜓)) | |
| 8 | 7 | equsalvw 1931 | . . 3 ⊢ (∀𝑧(𝑧 = 𝑦 → 𝜒) ↔ 𝜓) |
| 9 | 8 | nfbii 1778 | . 2 ⊢ (Ⅎ𝑥∀𝑧(𝑧 = 𝑦 → 𝜒) ↔ Ⅎ𝑥𝜓) |
| 10 | 5, 6, 9 | bj-syl66ib 32833 | 1 ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∀wal 1481 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: bj-dvelimv 32836 bj-axc14nf 32838 |
| Copyright terms: Public domain | W3C validator |