| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfnbi | Structured version Visualization version GIF version | ||
| Description: A variable is non-free in a proposition if and only if it is so in its negation. (Contributed by BJ, 6-May-2019.) |
| Ref | Expression |
|---|---|
| nfnbi | ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | notnotb 304 | . . . . 5 ⊢ (𝜑 ↔ ¬ ¬ 𝜑) | |
| 2 | 1 | albii 1747 | . . . 4 ⊢ (∀𝑥𝜑 ↔ ∀𝑥 ¬ ¬ 𝜑) |
| 3 | 2 | orbi1i 542 | . . 3 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥 ¬ ¬ 𝜑 ∨ ∀𝑥 ¬ 𝜑)) |
| 4 | orcom 402 | . . 3 ⊢ ((∀𝑥 ¬ ¬ 𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑)) | |
| 5 | 3, 4 | bitri 264 | . 2 ⊢ ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑)) |
| 6 | nf3 1712 | . 2 ⊢ (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑)) | |
| 7 | nf3 1712 | . 2 ⊢ (Ⅎ𝑥 ¬ 𝜑 ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑)) | |
| 8 | 5, 6, 7 | 3bitr4i 292 | 1 ⊢ (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 ∨ wo 383 ∀wal 1481 Ⅎwnf 1708 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: nfnt 1782 |
| Copyright terms: Public domain | W3C validator |