MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnbi Structured version   Visualization version   GIF version

Theorem nfnbi 1781
Description: A variable is non-free in a proposition if and only if it is so in its negation. (Contributed by BJ, 6-May-2019.)
Assertion
Ref Expression
nfnbi (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑)

Proof of Theorem nfnbi
StepHypRef Expression
1 notnotb 304 . . . . 5 (𝜑 ↔ ¬ ¬ 𝜑)
21albii 1747 . . . 4 (∀𝑥𝜑 ↔ ∀𝑥 ¬ ¬ 𝜑)
32orbi1i 542 . . 3 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥 ¬ ¬ 𝜑 ∨ ∀𝑥 ¬ 𝜑))
4 orcom 402 . . 3 ((∀𝑥 ¬ ¬ 𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑))
53, 4bitri 264 . 2 ((∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑) ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑))
6 nf3 1712 . 2 (Ⅎ𝑥𝜑 ↔ (∀𝑥𝜑 ∨ ∀𝑥 ¬ 𝜑))
7 nf3 1712 . 2 (Ⅎ𝑥 ¬ 𝜑 ↔ (∀𝑥 ¬ 𝜑 ∨ ∀𝑥 ¬ ¬ 𝜑))
85, 6, 73bitr4i 292 1 (Ⅎ𝑥𝜑 ↔ Ⅎ𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 383  wal 1481  wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1705  df-nf 1710
This theorem is referenced by:  nfnt  1782
  Copyright terms: Public domain W3C validator