MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnbi Structured version   Visualization version   Unicode version

Theorem nfnbi 1781
Description: A variable is non-free in a proposition if and only if it is so in its negation. (Contributed by BJ, 6-May-2019.)
Assertion
Ref Expression
nfnbi  |-  ( F/ x ph  <->  F/ x  -.  ph )

Proof of Theorem nfnbi
StepHypRef Expression
1 notnotb 304 . . . . 5  |-  ( ph  <->  -. 
-.  ph )
21albii 1747 . . . 4  |-  ( A. x ph  <->  A. x  -.  -.  ph )
32orbi1i 542 . . 3  |-  ( ( A. x ph  \/  A. x  -.  ph )  <->  ( A. x  -.  -.  ph  \/  A. x  -.  ph ) )
4 orcom 402 . . 3  |-  ( ( A. x  -.  -.  ph  \/  A. x  -.  ph )  <->  ( A. x  -.  ph  \/  A. x  -.  -.  ph ) )
53, 4bitri 264 . 2  |-  ( ( A. x ph  \/  A. x  -.  ph )  <->  ( A. x  -.  ph  \/  A. x  -.  -.  ph ) )
6 nf3 1712 . 2  |-  ( F/ x ph  <->  ( A. x ph  \/  A. x  -.  ph ) )
7 nf3 1712 . 2  |-  ( F/ x  -.  ph  <->  ( A. x  -.  ph  \/  A. x  -.  -.  ph ) )
85, 6, 73bitr4i 292 1  |-  ( F/ x ph  <->  F/ x  -.  ph )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    <-> wb 196    \/ wo 383   A.wal 1481   F/wnf 1708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1705  df-nf 1710
This theorem is referenced by:  nfnt  1782
  Copyright terms: Public domain W3C validator