MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfntOLD Structured version   Visualization version   GIF version

Theorem nfntOLD 2209
Description: Obsolete proof of nfnt 1782 as of 6-Oct-2021. (Contributed by Mario Carneiro, 24-Sep-2016.) (Proof shortened by Wolf Lammen, 28-Dec-2017.) (Revised by BJ, 24-Jul-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfntOLD (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)

Proof of Theorem nfntOLD
StepHypRef Expression
1 nfnf1OLDOLD 2208 . 2 𝑥𝑥𝜑
2 df-nfOLD 1721 . . 3 (Ⅎ𝑥𝜑 ↔ ∀𝑥(𝜑 → ∀𝑥𝜑))
3 hbnt 2144 . . 3 (∀𝑥(𝜑 → ∀𝑥𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
42, 3sylbi 207 . 2 (Ⅎ𝑥𝜑 → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
51, 4nfdOLD 2193 1 (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1481  wnfOLD 1709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1705  df-nf 1710  df-nfOLD 1721
This theorem is referenced by:  nfnOLD  2210  nfndOLD  2211  19.23tOLD  2218
  Copyright terms: Public domain W3C validator