MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnOLD Structured version   Visualization version   GIF version

Theorem nfnOLD 2210
Description: Obsolete proof of nfn 1784 as of 6-Oct-2021. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
nfnOLD.1 𝑥𝜑
Assertion
Ref Expression
nfnOLD 𝑥 ¬ 𝜑

Proof of Theorem nfnOLD
StepHypRef Expression
1 nfnOLD.1 . 2 𝑥𝜑
2 nfntOLD 2209 . 2 (Ⅎ𝑥𝜑 → Ⅎ𝑥 ¬ 𝜑)
31, 2ax-mp 5 1 𝑥 ¬ 𝜑
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wnfOLD 1709
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047
This theorem depends on definitions:  df-bi 197  df-or 385  df-ex 1705  df-nf 1710  df-nfOLD 1721
This theorem is referenced by:  nfnanOLD  2238  nforOLD  2244
  Copyright terms: Public domain W3C validator