| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfsb4 | Structured version Visualization version GIF version | ||
| Description: A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfsb4.1 | ⊢ Ⅎ𝑧𝜑 |
| Ref | Expression |
|---|---|
| nfsb4 | ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsb4t 2389 | . 2 ⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) | |
| 2 | nfsb4.1 | . 2 ⊢ Ⅎ𝑧𝜑 | |
| 3 | 1, 2 | mpg 1724 | 1 ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 Ⅎwnf 1708 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: sbco2 2415 nfsb 2440 |
| Copyright terms: Public domain | W3C validator |