![]() |
Metamath
Proof Explorer Theorem List (p. 24 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | nfeqf 2301 | A variable is effectively not free in an equality if it is not either of the involved variables. Ⅎ version of ax-c9 34175. (Contributed by Mario Carneiro, 6-Oct-2016.) Remove dependency on ax-11 2034. (Revised by Wolf Lammen, 6-Sep-2018.) |
⊢ ((¬ ∀𝑧 𝑧 = 𝑥 ∧ ¬ ∀𝑧 𝑧 = 𝑦) → Ⅎ𝑧 𝑥 = 𝑦) | ||
Theorem | axc9 2302 | Derive set.mm's original ax-c9 34175 from the shorter ax-13 2246. (Contributed by NM, 29-Nov-2015.) (Revised by NM, 24-Dec-2015.) (Proof shortened by Wolf Lammen, 29-Apr-2018.) |
⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 = 𝑦 → ∀𝑧 𝑥 = 𝑦))) | ||
Theorem | axc15 2303 |
Derivation of set.mm's original ax-c15 34174 from ax-c11n 34173 and the shorter
ax-12 2047 that has replaced it.
Theorem ax12 2304 shows the reverse derivation of ax-12 2047 from ax-c15 34174. Normally, axc15 2303 should be used rather than ax-c15 34174, except by theorems specifically studying the latter's properties. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | ||
Theorem | ax12 2304 | Rederivation of axiom ax-12 2047 from ax12v 2048 (used only via sp 2053) , axc11r 2187, and axc15 2303 (on top of Tarski's FOL). (Contributed by NM, 22-Jan-2007.) Proof uses contemporary axioms. (Revised by Wolf Lammen, 8-Aug-2020.) (Proof shortened by BJ, 4-Jul-2021.) |
⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | ax13ALT 2305 | Alternate proof of ax13 2249 from FOL, sp 2053, and axc9 2302. (Contributed by NM, 21-Dec-2015.) (Proof shortened by Wolf Lammen, 31-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ 𝑥 = 𝑦 → (𝑦 = 𝑧 → ∀𝑥 𝑦 = 𝑧)) | ||
Theorem | axc11nlemALT 2306* | Alternate version of axc11nlemOLD2 1988 used in an older proof. (Contributed by NM, 8-Jul-2016.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑤 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | axc11n 2307 | Derive set.mm's original ax-c11n 34173 from others. Commutation law for identical variable specifiers. The antecedent and consequent are true when 𝑥 and 𝑦 are substituted with the same variable. Lemma L12 in [Megill] p. 445 (p. 12 of the preprint). If a disjoint variable condition is added on 𝑥 and 𝑦, then this becomes an instance of aevlem 1981. Use aecom 2311 instead when this does not lengthen the proof. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Revised by Wolf Lammen, 30-Nov-2019.) (Proof shortened by BJ, 29-Mar-2021.) (Proof shortened by Wolf Lammen, 2-Jul-2021.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | axc11nOLD 2308 | Obsolete proof of axc11n 2307 as of 2-Jul-2021. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Revised by Wolf Lammen, 30-Nov-2019.) (Proof shortened by BJ, 29-Mar-2021.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | axc11nOLDOLD 2309 | Old proof of axc11n 2307. Obsolete as of 29-Mar-2021. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) Adapt to a modification of axc11nlemOLD2 1988. (Revised by Wolf Lammen, 30-Nov-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | axc11nALT 2310 | Alternate proof of axc11n 2307 from axc11nlemALT 2306. (Contributed by NM, 10-May-1993.) (Revised by NM, 7-Nov-2015.) (Proof shortened by Wolf Lammen, 6-Mar-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | aecom 2311 | Commutation law for identical variable specifiers. Both sides of the biconditional are true when 𝑥 and 𝑦 are substituted with the same variable. (Contributed by NM, 10-May-1993.) Changed to a biconditional. (Revised by BJ, 26-Sep-2019.) |
⊢ (∀𝑥 𝑥 = 𝑦 ↔ ∀𝑦 𝑦 = 𝑥) | ||
Theorem | aecoms 2312 | A commutation rule for identical variable specifiers. (Contributed by NM, 10-May-1993.) |
⊢ (∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
Theorem | naecoms 2313 | A commutation rule for distinct variable specifiers. (Contributed by NM, 2-Jan-2002.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑦 𝑦 = 𝑥 → 𝜑) | ||
Theorem | axc11 2314 | Show that ax-c11 34172 can be derived from ax-c11n 34173 in the form of axc11n 2307. Normally, axc11 2314 should be used rather than ax-c11 34172, except by theorems specifically studying the latter's properties. (Contributed by NM, 16-May-2008.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 → ∀𝑦𝜑)) | ||
Theorem | hbae 2315 | All variables are effectively bound in an identical variable specifier. (Contributed by NM, 13-May-1993.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧∀𝑥 𝑥 = 𝑦) | ||
Theorem | nfae 2316 | All variables are effectively bound in an identical variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑧∀𝑥 𝑥 = 𝑦 | ||
Theorem | hbnae 2317 | All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 13-May-1993.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | nfnae 2318 | All variables are effectively bound in a distinct variable specifier. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑧 ¬ ∀𝑥 𝑥 = 𝑦 | ||
Theorem | hbnaes 2319 | Rule that applies hbnae 2317 to antecedent. (Contributed by NM, 15-May-1993.) |
⊢ (∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → 𝜑) | ||
Theorem | aevlemALTOLD 2320* | Older alternate version of aevlem 1981. Obsolete as of 30-Mar-2021. (Contributed by NM, 22-Jul-2015.) (Proof shortened by Wolf Lammen, 17-Feb-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (∀𝑧 𝑧 = 𝑤 → ∀𝑦 𝑦 = 𝑥) | ||
Theorem | aevALTOLD 2321* | Older alternate proof of aev 1983. Obsolete as of 30-Mar-2021. (Contributed by NM, 8-Nov-2006.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ∀𝑧 𝑤 = 𝑣) | ||
Theorem | axc16i 2322* | Inference with axc16 2135 as its conclusion. (Contributed by NM, 20-May-2008.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑧 → (𝜑 ↔ 𝜓)) & ⊢ (𝜓 → ∀𝑥𝜓) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | ||
Theorem | axc16nfALT 2323* | Alternate proof of axc16nf 2137, shorter but requiring ax-11 2034 and ax-13 2246. (Contributed by Mario Carneiro, 7-Oct-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → Ⅎ𝑧𝜑) | ||
Theorem | dral2 2324 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) Allow a shortening of dral1 2325. (Revised by Wolf Lammen, 4-Mar-2018.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑧𝜑 ↔ ∀𝑧𝜓)) | ||
Theorem | dral1 2325 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 24-Nov-1994.) Remove dependency on ax-11 2034. (Revised by Wolf Lammen, 6-Sep-2018.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
Theorem | dral1ALT 2326 | Alternate proof of dral1 2325, shorter but requiring ax-11 2034. (Contributed by NM, 24-Nov-1994.) (Proof shortened by Wolf Lammen, 22-Apr-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∀𝑥𝜑 ↔ ∀𝑦𝜓)) | ||
Theorem | drex1 2327 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑥𝜑 ↔ ∃𝑦𝜓)) | ||
Theorem | drex2 2328 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (∃𝑧𝜑 ↔ ∃𝑧𝜓)) | ||
Theorem | drnf1 2329 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑥𝜑 ↔ Ⅎ𝑦𝜓)) | ||
Theorem | drnf2 2330 | Formula-building lemma for use with the Distinctor Reduction Theorem. (Contributed by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 5-May-2018.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (∀𝑥 𝑥 = 𝑦 → (Ⅎ𝑧𝜑 ↔ Ⅎ𝑧𝜓)) | ||
Theorem | nfald2 2331 | Variation on nfald 2165 which adds the hypothesis that 𝑥 and 𝑦 are distinct in the inner subproof. (Contributed by Mario Carneiro, 8-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∀𝑦𝜓) | ||
Theorem | nfexd2 2332 | Variation on nfexd 2167 which adds the hypothesis that 𝑥 and 𝑦 are distinct in the inner subproof. (Contributed by Mario Carneiro, 8-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 & ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) ⇒ ⊢ (𝜑 → Ⅎ𝑥∃𝑦𝜓) | ||
Theorem | exdistrf 2333 | Distribution of existential quantifiers, with a bound-variable hypothesis saying that 𝑦 is not free in 𝜑, but 𝑥 can be free in 𝜑 (and there is no distinct variable condition on 𝑥 and 𝑦). (Contributed by Mario Carneiro, 20-Mar-2013.) (Proof shortened by Wolf Lammen, 14-May-2018.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑦𝜑) ⇒ ⊢ (∃𝑥∃𝑦(𝜑 ∧ 𝜓) → ∃𝑥(𝜑 ∧ ∃𝑦𝜓)) | ||
Theorem | dvelimf 2334 | Version of dvelimv 2338 without any variable restrictions. (Contributed by NM, 1-Oct-2002.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑧𝜓 & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) | ||
Theorem | dvelimdf 2335 | Deduction form of dvelimf 2334. (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑧𝜑 & ⊢ (𝜑 → Ⅎ𝑥𝜓) & ⊢ (𝜑 → Ⅎ𝑧𝜒) & ⊢ (𝜑 → (𝑧 = 𝑦 → (𝜓 ↔ 𝜒))) ⇒ ⊢ (𝜑 → (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜒)) | ||
Theorem | dvelimh 2336 | Version of dvelim 2337 without any variable restrictions. (Contributed by NM, 1-Oct-2002.) (Proof shortened by Wolf Lammen, 11-May-2018.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑧𝜓) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | dvelim 2337* |
This theorem can be used to eliminate a distinct variable restriction on
𝑥 and 𝑧 and replace it with the
"distinctor" ¬ ∀𝑥𝑥 = 𝑦
as an antecedent. 𝜑 normally has 𝑧 free and can be read
𝜑(𝑧), and 𝜓 substitutes 𝑦 for
𝑧
and can be read
𝜑(𝑦). We do not require that 𝑥 and
𝑦
be distinct: if
they are not, the distinctor will become false (in multiple-element
domains of discourse) and "protect" the consequent.
To obtain a closed-theorem form of this inference, prefix the hypotheses with ∀𝑥∀𝑧, conjoin them, and apply dvelimdf 2335. Other variants of this theorem are dvelimh 2336 (with no distinct variable restrictions) and dvelimhw 2173 (that avoids ax-13 2246). (Contributed by NM, 23-Nov-1994.) |
⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | dvelimv 2338* | Similar to dvelim 2337 with first hypothesis replaced by a distinct variable condition. (Contributed by NM, 25-Jul-2015.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) |
⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝜓 → ∀𝑥𝜓)) | ||
Theorem | dvelimnf 2339* | Version of dvelim 2337 using "not free" notation. (Contributed by Mario Carneiro, 9-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝑧 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝜓) | ||
Theorem | dveeq2ALT 2340* | Alternate proof of dveeq2 2298, shorter but requiring ax-11 2034. (Contributed by NM, 2-Jan-2002.) (Revised by NM, 20-Jul-2015.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 = 𝑦 → ∀𝑥 𝑧 = 𝑦)) | ||
Theorem | ax12OLD 2341 | Obsolete proof of ax12 2304 as of 4-Jul-2021 . Rederivation of axiom ax-12 2047 from ax12v 2048, axc11r 2187, and other axioms. (Contributed by NM, 22-Jan-2007.) Proof uses contemporary axioms. (Revised by Wolf Lammen, 8-Aug-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | ax12v2OLD 2342* | Obsolete proof of ax12v 2048 as of 24-Mar-2021. (Contributed by NM, 12-Feb-2007.) (Proof shortened by Wolf Lammen, 21-Apr-2018.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝑥 = 𝑧 → (𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | ||
Theorem | ax12a2OLD 2343* | Obsolete proof of ax12v 2048 as of 24-Mar-2021. (Contributed by NM, 12-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑧 → (∀𝑧𝜑 → ∀𝑥(𝑥 = 𝑧 → 𝜑))) ⇒ ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | ||
Theorem | axc15OLD 2344 | Obsolete proof of axc15 2303 as of 24-Mar-2021. (Contributed by NM, 3-Feb-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑥 = 𝑦 → (𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)))) | ||
Theorem | ax12b 2345 | A bidirectional version of axc15 2303. (Contributed by NM, 30-Jun-2006.) |
⊢ ((¬ ∀𝑥 𝑥 = 𝑦 ∧ 𝑥 = 𝑦) → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | equvini 2346 | A variable introduction law for equality. Lemma 15 of [Monk2] p. 109, however we do not require 𝑧 to be distinct from 𝑥 and 𝑦. See equvinv 1959 for a shorter proof requiring fewer axioms when 𝑧 is required to be distinct from 𝑥 and 𝑦. (Contributed by NM, 10-Jan-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof shortened by Wolf Lammen, 15-Sep-2018.) |
⊢ (𝑥 = 𝑦 → ∃𝑧(𝑥 = 𝑧 ∧ 𝑧 = 𝑦)) | ||
Theorem | equvel 2347 | A variable elimination law for equality with no distinct variable requirements. Compare equvini 2346. (Contributed by NM, 1-Mar-2013.) (Proof shortened by Mario Carneiro, 17-Oct-2016.) (Proof shortened by Wolf Lammen, 15-Jun-2019.) |
⊢ (∀𝑧(𝑧 = 𝑥 ↔ 𝑧 = 𝑦) → 𝑥 = 𝑦) | ||
Theorem | equs5a 2348 | A property related to substitution that unlike equs5 2351 does not require a distinctor antecedent. See equs5aALT 2177 for an alternate proof using ax-12 2047 but not ax13 2249. (Contributed by NM, 2-Feb-2007.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ ∀𝑦𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | equs5e 2349 | A property related to substitution that unlike equs5 2351 does not require a distinctor antecedent. See equs5eALT 2178 for an alternate proof using ax-12 2047 but not ax13 2249. (Contributed by NM, 2-Feb-2007.) (Proof shortened by Wolf Lammen, 15-Jan-2018.) |
⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | ||
Theorem | equs45f 2350 | Two ways of expressing substitution when 𝑦 is not free in 𝜑. The implication "to the left" is equs4 2290 and does not require the non-freeness hypothesis. Theorem sb56 2150 replaces the non-freeness hypothesis with a dv condition and equs5 2351 replaces it with a distinctor as antecedent. (Contributed by NM, 25-Apr-2008.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | equs5 2351 | Lemma used in proofs of substitution properties. If there is a dv condition on 𝑥, 𝑦, then sb56 2150 can be used instead; if 𝑦 is not free in 𝜑, then equs45f 2350 can be used. (Contributed by NM, 14-May-1993.) (Revised by BJ, 1-Oct-2018.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | sb2 2352 | One direction of a simplified definition of substitution. The converse requires either a dv condition (sb6 2429) or a non-freeness hypothesis (sb6f 2385). (Contributed by NM, 13-May-1993.) |
⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | ||
Theorem | stdpc4 2353 | The specialization axiom of standard predicate calculus. It states that if a statement 𝜑 holds for all 𝑥, then it also holds for the specific case of 𝑦 (properly) substituted for 𝑥. Translated to traditional notation, it can be read: "∀𝑥𝜑(𝑥) → 𝜑(𝑦), provided that 𝑦 is free for 𝑥 in 𝜑(𝑥)." Axiom 4 of [Mendelson] p. 69. See also spsbc 3448 and rspsbc 3518. (Contributed by NM, 14-May-1993.) |
⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | ||
Theorem | 2stdpc4 2354 | A double specialization using explicit substitution. This is Theorem PM*11.1 in [WhiteheadRussell] p. 159. See stdpc4 2353 for the analogous single specialization. See 2sp 2056 for another double specialization. (Contributed by Andrew Salmon, 24-May-2011.) (Revised by BJ, 21-Oct-2018.) |
⊢ (∀𝑥∀𝑦𝜑 → [𝑧 / 𝑥][𝑤 / 𝑦]𝜑) | ||
Theorem | sb3 2355 | One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 5-Aug-1993.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (∃𝑥(𝑥 = 𝑦 ∧ 𝜑) → [𝑦 / 𝑥]𝜑)) | ||
Theorem | sb4 2356 | One direction of a simplified definition of substitution when variables are distinct. (Contributed by NM, 14-May-1993.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | sb4a 2357 | A version of sb4 2356 that doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) |
⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | sb4b 2358 | Simplified definition of substitution when variables are distinct. (Contributed by NM, 27-May-1997.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | hbsb2 2359 | Bound-variable hypothesis builder for substitution. (Contributed by NM, 14-May-1993.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) | ||
Theorem | nfsb2 2360 | Bound-variable hypothesis builder for substitution. (Contributed by Mario Carneiro, 4-Oct-2016.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | hbsb2a 2361 | Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.) |
⊢ ([𝑦 / 𝑥]∀𝑦𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | sb4e 2362 | One direction of a simplified definition of substitution that unlike sb4 2356 doesn't require a distinctor antecedent. (Contributed by NM, 2-Feb-2007.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → ∃𝑦𝜑)) | ||
Theorem | hbsb2e 2363 | Special case of a bound-variable hypothesis builder for substitution. (Contributed by NM, 2-Feb-2007.) |
⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]∃𝑦𝜑) | ||
Theorem | hbsb3 2364 | If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. (Contributed by NM, 14-May-1993.) |
⊢ (𝜑 → ∀𝑦𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑) | ||
Theorem | nfs1 2365 | If 𝑦 is not free in 𝜑, 𝑥 is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
Theorem | axc16ALT 2366* | Alternate proof of axc16 2135, shorter but requiring ax-10 2019, ax-11 2034, ax-13 2246 and using df-nf 1710 and df-sb 1881. (Contributed by NM, 17-May-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑥𝜑)) | ||
Theorem | axc16gALT 2367* | Alternate proof of axc16g 2134 that uses df-sb 1881 and requires ax-10 2019, ax-11 2034, ax-13 2246. (Contributed by NM, 15-May-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∀𝑥 𝑥 = 𝑦 → (𝜑 → ∀𝑧𝜑)) | ||
Theorem | equsb1 2368 | Substitution applied to an atomic wff. (Contributed by NM, 10-May-1993.) |
⊢ [𝑦 / 𝑥]𝑥 = 𝑦 | ||
Theorem | equsb2 2369 | Substitution applied to an atomic wff. (Contributed by NM, 10-May-1993.) |
⊢ [𝑦 / 𝑥]𝑦 = 𝑥 | ||
Theorem | dveel1 2370* | Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑦 ∈ 𝑧 → ∀𝑥 𝑦 ∈ 𝑧)) | ||
Theorem | dveel2 2371* | Quantifier introduction when one pair of variables is distinct. (Contributed by NM, 2-Jan-2002.) |
⊢ (¬ ∀𝑥 𝑥 = 𝑦 → (𝑧 ∈ 𝑦 → ∀𝑥 𝑧 ∈ 𝑦)) | ||
Theorem | axc14 2372 |
Axiom ax-c14 34176 is redundant if we assume ax-5 1839.
Remark 9.6 in
[Megill] p. 448 (p. 16 of the preprint),
regarding axiom scheme C14'.
Note that 𝑤 is a dummy variable introduced in the proof. Its purpose is to satisfy the distinct variable requirements of dveel2 2371 and ax-5 1839. By the end of the proof it has vanished, and the final theorem has no distinct variable requirements. (Contributed by NM, 29-Jun-1995.) (Proof modification is discouraged.) |
⊢ (¬ ∀𝑧 𝑧 = 𝑥 → (¬ ∀𝑧 𝑧 = 𝑦 → (𝑥 ∈ 𝑦 → ∀𝑧 𝑥 ∈ 𝑦))) | ||
Theorem | dfsb2 2373 | An alternate definition of proper substitution that, like df-sb 1881, mixes free and bound variables to avoid distinct variable requirements. (Contributed by NM, 17-Feb-2005.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 ∧ 𝜑) ∨ ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | dfsb3 2374 | An alternate definition of proper substitution df-sb 1881 that uses only primitive connectives (no defined terms) on the right-hand side. (Contributed by NM, 6-Mar-2007.) |
⊢ ([𝑦 / 𝑥]𝜑 ↔ ((𝑥 = 𝑦 → ¬ 𝜑) → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | ||
Theorem | sbequi 2375 | An equality theorem for substitution. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 15-Sep-2018.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) | ||
Theorem | sbequ 2376 | An equality theorem for substitution. Used in proof of Theorem 9.7 in [Megill] p. 449 (p. 16 of the preprint). (Contributed by NM, 14-May-1993.) |
⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) | ||
Theorem | drsb1 2377 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 2-Jun-1993.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑧 / 𝑦]𝜑)) | ||
Theorem | drsb2 2378 | Formula-building lemma for use with the Distinctor Reduction Theorem. Part of Theorem 9.4 of [Megill] p. 448 (p. 16 of preprint). (Contributed by NM, 27-Feb-2005.) |
⊢ (∀𝑥 𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 ↔ [𝑦 / 𝑧]𝜑)) | ||
Theorem | sbft 2379 | Substitution has no effect on a non-free variable. (Contributed by NM, 30-May-2009.) (Revised by Mario Carneiro, 12-Oct-2016.) (Proof shortened by Wolf Lammen, 3-May-2018.) |
⊢ (Ⅎ𝑥𝜑 → ([𝑦 / 𝑥]𝜑 ↔ 𝜑)) | ||
Theorem | sbf 2380 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | sbh 2381 | Substitution for a variable not free in a wff does not affect it. (Contributed by NM, 14-May-1993.) |
⊢ (𝜑 → ∀𝑥𝜑) ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) | ||
Theorem | sbf2 2382 | Substitution has no effect on a bound variable. (Contributed by NM, 1-Jul-2005.) |
⊢ ([𝑦 / 𝑥]∀𝑥𝜑 ↔ ∀𝑥𝜑) | ||
Theorem | nfs1f 2383 | If 𝑥 is not free in 𝜑, it is not free in [𝑦 / 𝑥]𝜑. (Contributed by Mario Carneiro, 11-Aug-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ Ⅎ𝑥[𝑦 / 𝑥]𝜑 | ||
Theorem | sb6x 2384 | Equivalence involving substitution for a variable not free. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | sb6f 2385 | Equivalence for substitution when 𝑦 is not free in 𝜑. The implication "to the left" is sb2 2352 and does not require the non-freeness hypothesis. Theorem sb6 2429 replaces the non-freeness hypothesis with a dv condition. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → 𝜑)) | ||
Theorem | sb5f 2386 | Equivalence for substitution when 𝑦 is not free in 𝜑. The implication "to the right" is sb1 1883 and does not require the non-freeness hypothesis. Theorem sb5 2430 replaces the non-freeness hypothesis with a dv condition. (Contributed by NM, 5-Aug-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑦𝜑 ⇒ ⊢ ([𝑦 / 𝑥]𝜑 ↔ ∃𝑥(𝑥 = 𝑦 ∧ 𝜑)) | ||
Theorem | sbequ5 2387 | Substitution does not change an identical variable specifier. (Contributed by NM, 15-May-1993.) |
⊢ ([𝑤 / 𝑧]∀𝑥 𝑥 = 𝑦 ↔ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | sbequ6 2388 | Substitution does not change a distinctor. (Contributed by NM, 5-Aug-1993.) |
⊢ ([𝑤 / 𝑧] ¬ ∀𝑥 𝑥 = 𝑦 ↔ ¬ ∀𝑥 𝑥 = 𝑦) | ||
Theorem | nfsb4t 2389 | A variable not free remains so after substitution with a distinct variable (closed form of nfsb4 2390). (Contributed by NM, 7-Apr-2004.) (Revised by Mario Carneiro, 4-Oct-2016.) (Proof shortened by Wolf Lammen, 11-May-2018.) |
⊢ (∀𝑥Ⅎ𝑧𝜑 → (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑)) | ||
Theorem | nfsb4 2390 | A variable not free remains so after substitution with a distinct variable. (Contributed by NM, 14-May-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑧𝜑 ⇒ ⊢ (¬ ∀𝑧 𝑧 = 𝑦 → Ⅎ𝑧[𝑦 / 𝑥]𝜑) | ||
Theorem | sbn 2391 | Negation inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 30-Apr-2018.) |
⊢ ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ [𝑦 / 𝑥]𝜑) | ||
Theorem | sbi1 2392 | Removal of implication from substitution. (Contributed by NM, 14-May-1993.) |
⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | ||
Theorem | sbi2 2393 | Introduction of implication into substitution. (Contributed by NM, 14-May-1993.) |
⊢ (([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓) → [𝑦 / 𝑥](𝜑 → 𝜓)) | ||
Theorem | spsbim 2394 | Specialization of implication. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Andrew Salmon, 25-May-2011.) |
⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | ||
Theorem | sbim 2395 | Implication inside and outside of substitution are equivalent. (Contributed by NM, 14-May-1993.) |
⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | ||
Theorem | sbrim 2396 | Substitution with a variable not free in antecedent affects only the consequent. (Contributed by NM, 2-Jun-1993.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑥𝜑 ⇒ ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ (𝜑 → [𝑦 / 𝑥]𝜓)) | ||
Theorem | sblim 2397 | Substitution with a variable not free in consequent affects only the antecedent. (Contributed by NM, 14-Nov-2013.) (Revised by Mario Carneiro, 4-Oct-2016.) |
⊢ Ⅎ𝑥𝜓 ⇒ ⊢ ([𝑦 / 𝑥](𝜑 → 𝜓) ↔ ([𝑦 / 𝑥]𝜑 → 𝜓)) | ||
Theorem | sbor 2398 | Logical OR inside and outside of substitution are equivalent. (Contributed by NM, 29-Sep-2002.) |
⊢ ([𝑦 / 𝑥](𝜑 ∨ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∨ [𝑦 / 𝑥]𝜓)) | ||
Theorem | sban 2399 | Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-May-1993.) |
⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓)) | ||
Theorem | sb3an 2400 | Conjunction inside and outside of a substitution are equivalent. (Contributed by NM, 14-Dec-2006.) |
⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝜓 ∧ [𝑦 / 𝑥]𝜒)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |