| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ngptps | Structured version Visualization version GIF version | ||
| Description: A normed group is a topological space. (Contributed by Mario Carneiro, 5-Oct-2015.) |
| Ref | Expression |
|---|---|
| ngptps | ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ TopSp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ngpms 22404 | . 2 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp) | |
| 2 | mstps 22260 | . 2 ⊢ (𝐺 ∈ MetSp → 𝐺 ∈ TopSp) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝐺 ∈ NrmGrp → 𝐺 ∈ TopSp) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 1990 TopSpctps 20736 MetSpcmt 22123 NrmGrpcngp 22382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-co 5123 df-res 5126 df-iota 5851 df-fv 5896 df-xms 22125 df-ms 22126 df-ngp 22388 |
| This theorem is referenced by: nmcn 22647 cnmpt1ip 23046 cnmpt2ip 23047 csscld 23048 clsocv 23049 rrxtps 40504 |
| Copyright terms: Public domain | W3C validator |