![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nlmnrg | Structured version Visualization version GIF version |
Description: The scalar component of a left module is a normed ring. (Contributed by Mario Carneiro, 4-Oct-2015.) |
Ref | Expression |
---|---|
nlmnrg.1 | ⊢ 𝐹 = (Scalar‘𝑊) |
Ref | Expression |
---|---|
nlmnrg | ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . . 4 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
2 | eqid 2622 | . . . 4 ⊢ (norm‘𝑊) = (norm‘𝑊) | |
3 | eqid 2622 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
4 | nlmnrg.1 | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
5 | eqid 2622 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
6 | eqid 2622 | . . . 4 ⊢ (norm‘𝐹) = (norm‘𝐹) | |
7 | 1, 2, 3, 4, 5, 6 | isnlm 22479 | . . 3 ⊢ (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥 ∈ (Base‘𝐹)∀𝑦 ∈ (Base‘𝑊)((norm‘𝑊)‘(𝑥( ·𝑠 ‘𝑊)𝑦)) = (((norm‘𝐹)‘𝑥) · ((norm‘𝑊)‘𝑦)))) |
8 | 7 | simplbi 476 | . 2 ⊢ (𝑊 ∈ NrmMod → (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing)) |
9 | 8 | simp3d 1075 | 1 ⊢ (𝑊 ∈ NrmMod → 𝐹 ∈ NrmRing) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1037 = wceq 1483 ∈ wcel 1990 ∀wral 2912 ‘cfv 5888 (class class class)co 6650 · cmul 9941 Basecbs 15857 Scalarcsca 15944 ·𝑠 cvsca 15945 LModclmod 18863 normcnm 22381 NrmGrpcngp 22382 NrmRingcnrg 22384 NrmModcnlm 22385 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-nul 4789 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-nlm 22391 |
This theorem is referenced by: nlmngp2 22484 nlmtlm 22498 nvctvc 22504 lssnlm 22505 |
Copyright terms: Public domain | W3C validator |