MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isnlm Structured version   Visualization version   GIF version

Theorem isnlm 22479
Description: A normed (left) module is a module which is also a normed group over a normed ring, such that the norm distributes over scalar multiplication. (Contributed by Mario Carneiro, 4-Oct-2015.)
Hypotheses
Ref Expression
isnlm.v 𝑉 = (Base‘𝑊)
isnlm.n 𝑁 = (norm‘𝑊)
isnlm.s · = ( ·𝑠𝑊)
isnlm.f 𝐹 = (Scalar‘𝑊)
isnlm.k 𝐾 = (Base‘𝐹)
isnlm.a 𝐴 = (norm‘𝐹)
Assertion
Ref Expression
isnlm (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑁,𝑦   𝑥,𝑉,𝑦   𝑥,𝐾   𝑥,𝑊,𝑦   𝑥, · ,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)   𝐾(𝑦)

Proof of Theorem isnlm
Dummy variables 𝑤 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 anass 681 . 2 (((𝑊 ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))) ↔ (𝑊 ∈ (NrmGrp ∩ LMod) ∧ (𝐹 ∈ NrmRing ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))))
2 df-3an 1039 . . . 4 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ NrmRing))
3 elin 3796 . . . . 5 (𝑊 ∈ (NrmGrp ∩ LMod) ↔ (𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod))
43anbi1i 731 . . . 4 ((𝑊 ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod) ∧ 𝐹 ∈ NrmRing))
52, 4bitr4i 267 . . 3 ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ↔ (𝑊 ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing))
65anbi1i 731 . 2 (((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))) ↔ ((𝑊 ∈ (NrmGrp ∩ LMod) ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
7 fvexd 6203 . . . 4 (𝑤 = 𝑊 → (Scalar‘𝑤) ∈ V)
8 id 22 . . . . . . 7 (𝑓 = (Scalar‘𝑤) → 𝑓 = (Scalar‘𝑤))
9 fveq2 6191 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
10 isnlm.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
119, 10syl6eqr 2674 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
128, 11sylan9eqr 2678 . . . . . 6 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → 𝑓 = 𝐹)
1312eleq1d 2686 . . . . 5 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (𝑓 ∈ NrmRing ↔ 𝐹 ∈ NrmRing))
1412fveq2d 6195 . . . . . . 7 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = (Base‘𝐹))
15 isnlm.k . . . . . . 7 𝐾 = (Base‘𝐹)
1614, 15syl6eqr 2674 . . . . . 6 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑓) = 𝐾)
17 simpl 473 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → 𝑤 = 𝑊)
1817fveq2d 6195 . . . . . . . 8 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑤) = (Base‘𝑊))
19 isnlm.v . . . . . . . 8 𝑉 = (Base‘𝑊)
2018, 19syl6eqr 2674 . . . . . . 7 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (Base‘𝑤) = 𝑉)
2117fveq2d 6195 . . . . . . . . . 10 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (norm‘𝑤) = (norm‘𝑊))
22 isnlm.n . . . . . . . . . 10 𝑁 = (norm‘𝑊)
2321, 22syl6eqr 2674 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (norm‘𝑤) = 𝑁)
2417fveq2d 6195 . . . . . . . . . . 11 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ( ·𝑠𝑤) = ( ·𝑠𝑊))
25 isnlm.s . . . . . . . . . . 11 · = ( ·𝑠𝑊)
2624, 25syl6eqr 2674 . . . . . . . . . 10 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ( ·𝑠𝑤) = · )
2726oveqd 6667 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (𝑥( ·𝑠𝑤)𝑦) = (𝑥 · 𝑦))
2823, 27fveq12d 6197 . . . . . . . 8 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (𝑁‘(𝑥 · 𝑦)))
2912fveq2d 6195 . . . . . . . . . . 11 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (norm‘𝑓) = (norm‘𝐹))
30 isnlm.a . . . . . . . . . . 11 𝐴 = (norm‘𝐹)
3129, 30syl6eqr 2674 . . . . . . . . . 10 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (norm‘𝑓) = 𝐴)
3231fveq1d 6193 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ((norm‘𝑓)‘𝑥) = (𝐴𝑥))
3323fveq1d 6193 . . . . . . . . 9 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ((norm‘𝑤)‘𝑦) = (𝑁𝑦))
3432, 33oveq12d 6668 . . . . . . . 8 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))
3528, 34eqeq12d 2637 . . . . . . 7 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) ↔ (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
3620, 35raleqbidv 3152 . . . . . 6 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) ↔ ∀𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
3716, 36raleqbidv 3152 . . . . 5 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → (∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)) ↔ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
3813, 37anbi12d 747 . . . 4 ((𝑤 = 𝑊𝑓 = (Scalar‘𝑤)) → ((𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦))) ↔ (𝐹 ∈ NrmRing ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))))
397, 38sbcied 3472 . . 3 (𝑤 = 𝑊 → ([(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦))) ↔ (𝐹 ∈ NrmRing ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))))
40 df-nlm 22391 . . 3 NrmMod = {𝑤 ∈ (NrmGrp ∩ LMod) ∣ [(Scalar‘𝑤) / 𝑓](𝑓 ∈ NrmRing ∧ ∀𝑥 ∈ (Base‘𝑓)∀𝑦 ∈ (Base‘𝑤)((norm‘𝑤)‘(𝑥( ·𝑠𝑤)𝑦)) = (((norm‘𝑓)‘𝑥) · ((norm‘𝑤)‘𝑦)))}
4139, 40elrab2 3366 . 2 (𝑊 ∈ NrmMod ↔ (𝑊 ∈ (NrmGrp ∩ LMod) ∧ (𝐹 ∈ NrmRing ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦)))))
421, 6, 413bitr4ri 293 1 (𝑊 ∈ NrmMod ↔ ((𝑊 ∈ NrmGrp ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ NrmRing) ∧ ∀𝑥𝐾𝑦𝑉 (𝑁‘(𝑥 · 𝑦)) = ((𝐴𝑥) · (𝑁𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912  Vcvv 3200  [wsbc 3435  cin 3573  cfv 5888  (class class class)co 6650   · cmul 9941  Basecbs 15857  Scalarcsca 15944   ·𝑠 cvsca 15945  LModclmod 18863  normcnm 22381  NrmGrpcngp 22382  NrmRingcnrg 22384  NrmModcnlm 22385
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-nul 4789
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-nlm 22391
This theorem is referenced by:  nmvs  22480  nlmngp  22481  nlmlmod  22482  nlmnrg  22483  sranlm  22488  lssnlm  22505  isncvsngp  22949  tchcph  23036  cnzh  30014  rezh  30015
  Copyright terms: Public domain W3C validator