![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > notrab | Structured version Visualization version GIF version |
Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.) |
Ref | Expression |
---|---|
notrab | ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difab 3896 | . 2 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∖ {𝑥 ∣ 𝜑}) = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)} | |
2 | difin 3861 | . . 3 ⊢ (𝐴 ∖ (𝐴 ∩ {𝑥 ∣ 𝜑})) = (𝐴 ∖ {𝑥 ∣ 𝜑}) | |
3 | dfrab3 3902 | . . . 4 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = (𝐴 ∩ {𝑥 ∣ 𝜑}) | |
4 | 3 | difeq2i 3725 | . . 3 ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = (𝐴 ∖ (𝐴 ∩ {𝑥 ∣ 𝜑})) |
5 | abid2 2745 | . . . 4 ⊢ {𝑥 ∣ 𝑥 ∈ 𝐴} = 𝐴 | |
6 | 5 | difeq1i 3724 | . . 3 ⊢ ({𝑥 ∣ 𝑥 ∈ 𝐴} ∖ {𝑥 ∣ 𝜑}) = (𝐴 ∖ {𝑥 ∣ 𝜑}) |
7 | 2, 4, 6 | 3eqtr4i 2654 | . 2 ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = ({𝑥 ∣ 𝑥 ∈ 𝐴} ∖ {𝑥 ∣ 𝜑}) |
8 | df-rab 2921 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ ¬ 𝜑)} | |
9 | 1, 7, 8 | 3eqtr4i 2654 | 1 ⊢ (𝐴 ∖ {𝑥 ∈ 𝐴 ∣ 𝜑}) = {𝑥 ∈ 𝐴 ∣ ¬ 𝜑} |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 384 = wceq 1483 ∈ wcel 1990 {cab 2608 {crab 2916 ∖ cdif 3571 ∩ cin 3573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rab 2921 df-v 3202 df-dif 3577 df-in 3581 |
This theorem is referenced by: rlimrege0 14310 ordtcld1 21001 ordtcld2 21002 lhop1lem 23776 rpvmasumlem 25176 finsumvtxdg2ssteplem1 26441 frgrwopreglem3 27178 hasheuni 30147 braew 30305 |
Copyright terms: Public domain | W3C validator |