MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notrab Structured version   Visualization version   GIF version

Theorem notrab 3904
Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
notrab (𝐴 ∖ {𝑥𝐴𝜑}) = {𝑥𝐴 ∣ ¬ 𝜑}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem notrab
StepHypRef Expression
1 difab 3896 . 2 ({𝑥𝑥𝐴} ∖ {𝑥𝜑}) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝜑)}
2 difin 3861 . . 3 (𝐴 ∖ (𝐴 ∩ {𝑥𝜑})) = (𝐴 ∖ {𝑥𝜑})
3 dfrab3 3902 . . . 4 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
43difeq2i 3725 . . 3 (𝐴 ∖ {𝑥𝐴𝜑}) = (𝐴 ∖ (𝐴 ∩ {𝑥𝜑}))
5 abid2 2745 . . . 4 {𝑥𝑥𝐴} = 𝐴
65difeq1i 3724 . . 3 ({𝑥𝑥𝐴} ∖ {𝑥𝜑}) = (𝐴 ∖ {𝑥𝜑})
72, 4, 63eqtr4i 2654 . 2 (𝐴 ∖ {𝑥𝐴𝜑}) = ({𝑥𝑥𝐴} ∖ {𝑥𝜑})
8 df-rab 2921 . 2 {𝑥𝐴 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝜑)}
91, 7, 83eqtr4i 2654 1 (𝐴 ∖ {𝑥𝐴𝜑}) = {𝑥𝐴 ∣ ¬ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 384   = wceq 1483  wcel 1990  {cab 2608  {crab 2916  cdif 3571  cin 3573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581
This theorem is referenced by:  rlimrege0  14310  ordtcld1  21001  ordtcld2  21002  lhop1lem  23776  rpvmasumlem  25176  finsumvtxdg2ssteplem1  26441  frgrwopreglem3  27178  hasheuni  30147  braew  30305
  Copyright terms: Public domain W3C validator