Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nulssgt Structured version   Visualization version   GIF version

Theorem nulssgt 31909
Description: The empty set is greater than any set of surreals. (Contributed by Scott Fenton, 8-Dec-2021.)
Assertion
Ref Expression
nulssgt (𝐴 ∈ 𝒫 No 𝐴 <<s ∅)

Proof of Theorem nulssgt
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3212 . . 3 (𝐴 ∈ 𝒫 No 𝐴 ∈ V)
2 0ex 4790 . . 3 ∅ ∈ V
31, 2jctir 561 . 2 (𝐴 ∈ 𝒫 No → (𝐴 ∈ V ∧ ∅ ∈ V))
4 elpwi 4168 . . 3 (𝐴 ∈ 𝒫 No 𝐴 No )
5 0ss 3972 . . . 4 ∅ ⊆ No
65a1i 11 . . 3 (𝐴 ∈ 𝒫 No → ∅ ⊆ No )
7 ral0 4076 . . . . 5 𝑦 ∈ ∅ 𝑥 <s 𝑦
87rgenw 2924 . . . 4 𝑥𝐴𝑦 ∈ ∅ 𝑥 <s 𝑦
98a1i 11 . . 3 (𝐴 ∈ 𝒫 No → ∀𝑥𝐴𝑦 ∈ ∅ 𝑥 <s 𝑦)
104, 6, 93jca 1242 . 2 (𝐴 ∈ 𝒫 No → (𝐴 No ∧ ∅ ⊆ No ∧ ∀𝑥𝐴𝑦 ∈ ∅ 𝑥 <s 𝑦))
11 brsslt 31900 . 2 (𝐴 <<s ∅ ↔ ((𝐴 ∈ V ∧ ∅ ∈ V) ∧ (𝐴 No ∧ ∅ ⊆ No ∧ ∀𝑥𝐴𝑦 ∈ ∅ 𝑥 <s 𝑦)))
123, 10, 11sylanbrc 698 1 (𝐴 ∈ 𝒫 No 𝐴 <<s ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037  wcel 1990  wral 2912  Vcvv 3200  wss 3574  c0 3915  𝒫 cpw 4158   class class class wbr 4653   No csur 31793   <s cslt 31794   <<s csslt 31896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-sslt 31897
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator