| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ralbinrald | Structured version Visualization version GIF version | ||
| Description: Elemination of a restricted universal quantification under certain conditions. (Contributed by Alexander van der Vekens, 2-Aug-2017.) |
| Ref | Expression |
|---|---|
| ralbinrald.1 | ⊢ (𝜑 → 𝑋 ∈ 𝐴) |
| ralbinrald.2 | ⊢ (𝑥 ∈ 𝐴 → 𝑥 = 𝑋) |
| ralbinrald.3 | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| ralbinrald | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralbinrald.1 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐴) | |
| 2 | ralbinrald.3 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜃)) | |
| 3 | 2 | adantl 482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝜓 ↔ 𝜃)) |
| 4 | 1, 3 | rspcdv 3312 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 → 𝜃)) |
| 5 | ralbinrald.2 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 → 𝑥 = 𝑋) | |
| 6 | 2 | bicomd 213 | . . . . . 6 ⊢ (𝑥 = 𝑋 → (𝜃 ↔ 𝜓)) |
| 7 | 5, 6 | syl 17 | . . . . 5 ⊢ (𝑥 ∈ 𝐴 → (𝜃 ↔ 𝜓)) |
| 8 | 7 | adantl 482 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜃 ↔ 𝜓)) |
| 9 | 8 | biimpd 219 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜃 → 𝜓)) |
| 10 | 9 | ralrimdva 2969 | . 2 ⊢ (𝜑 → (𝜃 → ∀𝑥 ∈ 𝐴 𝜓)) |
| 11 | 4, 10 | impbid 202 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∀wral 2912 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 |
| This theorem is referenced by: dfdfat2 41211 |
| Copyright terms: Public domain | W3C validator |