![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > olcs | Structured version Visualization version Unicode version |
Description: Deduction eliminating disjunct. (Contributed by NM, 21-Jun-1994.) (Proof shortened by Wolf Lammen, 3-Oct-2013.) |
Ref | Expression |
---|---|
olcs.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
olcs |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | olcs.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | orcoms 404 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | orcs 409 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 385 |
This theorem is referenced by: 0nn0 11307 fsum00 14530 pcfac 15603 mndifsplit 20442 bposlem2 25010 axcgrid 25796 3o2cs 29310 3o3cs 29311 fprodex01 29571 indsumin 30084 fsum2dsub 30685 finxpreclem2 33227 itg2addnclem 33461 tsan3 33950 |
Copyright terms: Public domain | W3C validator |