Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omllaw Structured version   Visualization version   GIF version

Theorem omllaw 34530
Description: The orthomodular law. (Contributed by NM, 18-Sep-2011.)
Hypotheses
Ref Expression
omllaw.b 𝐵 = (Base‘𝐾)
omllaw.l = (le‘𝐾)
omllaw.j = (join‘𝐾)
omllaw.m = (meet‘𝐾)
omllaw.o = (oc‘𝐾)
Assertion
Ref Expression
omllaw ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))

Proof of Theorem omllaw
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omllaw.b . . . . 5 𝐵 = (Base‘𝐾)
2 omllaw.l . . . . 5 = (le‘𝐾)
3 omllaw.j . . . . 5 = (join‘𝐾)
4 omllaw.m . . . . 5 = (meet‘𝐾)
5 omllaw.o . . . . 5 = (oc‘𝐾)
61, 2, 3, 4, 5isoml 34525 . . . 4 (𝐾 ∈ OML ↔ (𝐾 ∈ OL ∧ ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥))))))
76simprbi 480 . . 3 (𝐾 ∈ OML → ∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))))
8 breq1 4656 . . . . 5 (𝑥 = 𝑋 → (𝑥 𝑦𝑋 𝑦))
9 id 22 . . . . . . 7 (𝑥 = 𝑋𝑥 = 𝑋)
10 fveq2 6191 . . . . . . . 8 (𝑥 = 𝑋 → ( 𝑥) = ( 𝑋))
1110oveq2d 6666 . . . . . . 7 (𝑥 = 𝑋 → (𝑦 ( 𝑥)) = (𝑦 ( 𝑋)))
129, 11oveq12d 6668 . . . . . 6 (𝑥 = 𝑋 → (𝑥 (𝑦 ( 𝑥))) = (𝑋 (𝑦 ( 𝑋))))
1312eqeq2d 2632 . . . . 5 (𝑥 = 𝑋 → (𝑦 = (𝑥 (𝑦 ( 𝑥))) ↔ 𝑦 = (𝑋 (𝑦 ( 𝑋)))))
148, 13imbi12d 334 . . . 4 (𝑥 = 𝑋 → ((𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))) ↔ (𝑋 𝑦𝑦 = (𝑋 (𝑦 ( 𝑋))))))
15 breq2 4657 . . . . 5 (𝑦 = 𝑌 → (𝑋 𝑦𝑋 𝑌))
16 id 22 . . . . . 6 (𝑦 = 𝑌𝑦 = 𝑌)
17 oveq1 6657 . . . . . . 7 (𝑦 = 𝑌 → (𝑦 ( 𝑋)) = (𝑌 ( 𝑋)))
1817oveq2d 6666 . . . . . 6 (𝑦 = 𝑌 → (𝑋 (𝑦 ( 𝑋))) = (𝑋 (𝑌 ( 𝑋))))
1916, 18eqeq12d 2637 . . . . 5 (𝑦 = 𝑌 → (𝑦 = (𝑋 (𝑦 ( 𝑋))) ↔ 𝑌 = (𝑋 (𝑌 ( 𝑋)))))
2015, 19imbi12d 334 . . . 4 (𝑦 = 𝑌 → ((𝑋 𝑦𝑦 = (𝑋 (𝑦 ( 𝑋)))) ↔ (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋))))))
2114, 20rspc2v 3322 . . 3 ((𝑋𝐵𝑌𝐵) → (∀𝑥𝐵𝑦𝐵 (𝑥 𝑦𝑦 = (𝑥 (𝑦 ( 𝑥)))) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋))))))
227, 21syl5com 31 . 2 (𝐾 ∈ OML → ((𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋))))))
23223impib 1262 1 ((𝐾 ∈ OML ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌𝑌 = (𝑋 (𝑌 ( 𝑋)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1037   = wceq 1483  wcel 1990  wral 2912   class class class wbr 4653  cfv 5888  (class class class)co 6650  Basecbs 15857  lecple 15948  occoc 15949  joincjn 16944  meetcmee 16945  OLcol 34461  OMLcoml 34462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-oml 34466
This theorem is referenced by:  omllaw2N  34531  omllaw3  34532  omllaw4  34533
  Copyright terms: Public domain W3C validator