Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opabf Structured version   Visualization version   GIF version

Theorem opabf 34131
Description: A class abstraction of a collection of ordered pairs with a negated wff is the empty set. (Contributed by Peter Mazsa, 21-Oct-2019.)
Hypothesis
Ref Expression
opabf.1 ¬ 𝜑
Assertion
Ref Expression
opabf {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem opabf
StepHypRef Expression
1 rel0 5243 . 2 Rel ∅
2 opabf.1 . . . 4 ¬ 𝜑
32pm2.21i 116 . . 3 (𝜑 → ⟨𝑥, 𝑦⟩ ∈ ∅)
43opabssi 34130 . 2 (Rel ∅ → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ ∅)
5 ss0 3974 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ ∅ → {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅)
61, 4, 5mp2b 10 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = ∅
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1483  wcel 1990  wss 3574  c0 3915  cop 4183  {copab 4712  Rel wrel 5119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-rel 5121
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator