MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabt Structured version   Visualization version   GIF version

Theorem opelopabt 4987
Description: Closed theorem form of opelopab 4997. (Contributed by NM, 19-Feb-2013.)
Assertion
Ref Expression
opelopabt ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem opelopabt
StepHypRef Expression
1 elopab 4983 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ ∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
2 19.26-2 1799 . . . 4 (∀𝑥𝑦((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) ↔ (∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒))))
3 prth 595 . . . . . 6 (((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) → ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝜑𝜓) ∧ (𝜓𝜒))))
4 bitr 745 . . . . . 6 (((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))
53, 4syl6 35 . . . . 5 (((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) → ((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)))
652alimi 1740 . . . 4 (∀𝑥𝑦((𝑥 = 𝐴 → (𝜑𝜓)) ∧ (𝑦 = 𝐵 → (𝜓𝜒))) → ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)))
72, 6sylbir 225 . . 3 ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒))) → ∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)))
8 copsex2t 4957 . . 3 ((∀𝑥𝑦((𝑥 = 𝐴𝑦 = 𝐵) → (𝜑𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜒))
97, 8stoic3 1701 . 2 ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (∃𝑥𝑦(⟨𝐴, 𝐵⟩ = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ 𝜒))
101, 9syl5bb 272 1 ((∀𝑥𝑦(𝑥 = 𝐴 → (𝜑𝜓)) ∧ ∀𝑥𝑦(𝑦 = 𝐵 → (𝜓𝜒)) ∧ (𝐴𝑉𝐵𝑊)) → (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1037  wal 1481   = wceq 1483  wex 1704  wcel 1990  cop 4183  {copab 4712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator