Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opelresALTV Structured version   Visualization version   GIF version

Theorem opelresALTV 34031
Description: Ordered pair elementhood in a restriction. Exercise 13 of [TakeutiZaring] p. 25. (Contributed by NM, 13-Nov-1995.)
Assertion
Ref Expression
opelresALTV (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))

Proof of Theorem opelresALTV
StepHypRef Expression
1 df-res 5126 . . 3 (𝑅𝐴) = (𝑅 ∩ (𝐴 × V))
21elin2 3801 . 2 (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (⟨𝐵, 𝐶⟩ ∈ 𝑅 ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × V)))
3 elex 3212 . . . . 5 (𝐶𝑉𝐶 ∈ V)
43biantrud 528 . . . 4 (𝐶𝑉 → (𝐵𝐴 ↔ (𝐵𝐴𝐶 ∈ V)))
5 opelxp 5146 . . . 4 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × V) ↔ (𝐵𝐴𝐶 ∈ V))
64, 5syl6rbbr 279 . . 3 (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝐴 × V) ↔ 𝐵𝐴))
76anbi1cd 33997 . 2 (𝐶𝑉 → ((⟨𝐵, 𝐶⟩ ∈ 𝑅 ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × V)) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))
82, 7syl5bb 272 1 (𝐶𝑉 → (⟨𝐵, 𝐶⟩ ∈ (𝑅𝐴) ↔ (𝐵𝐴 ∧ ⟨𝐵, 𝐶⟩ ∈ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wcel 1990  Vcvv 3200  cop 4183   × cxp 5112  cres 5116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120  df-res 5126
This theorem is referenced by:  brresALTV  34032
  Copyright terms: Public domain W3C validator