![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opideq | Structured version Visualization version GIF version |
Description: Equality conditions for ordered pairs 〈𝐴, 𝐴〉 and 〈𝐵, 𝐵〉. (Contributed by Peter Mazsa, 22-Jul-2019.) |
Ref | Expression |
---|---|
opideq | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐴〉 = 〈𝐵, 𝐵〉 ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opidORIG 34109 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 〈𝐴, 𝐴〉 = {{𝐴}}) | |
2 | opidORIG 34109 | . . 3 ⊢ (𝐵 ∈ 𝑊 → 〈𝐵, 𝐵〉 = {{𝐵}}) | |
3 | 1, 2 | eqeqan12d 2638 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐴〉 = 〈𝐵, 𝐵〉 ↔ {{𝐴}} = {{𝐵}})) |
4 | snex 4908 | . . . . 5 ⊢ {𝐴} ∈ V | |
5 | sneqbg 4374 | . . . . 5 ⊢ ({𝐴} ∈ V → ({{𝐴}} = {{𝐵}} ↔ {𝐴} = {𝐵})) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ({{𝐴}} = {{𝐵}} ↔ {𝐴} = {𝐵}) |
7 | sneqbg 4374 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ({𝐴} = {𝐵} ↔ 𝐴 = 𝐵)) | |
8 | 6, 7 | syl5bb 272 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ({{𝐴}} = {{𝐵}} ↔ 𝐴 = 𝐵)) |
9 | 8 | adantr 481 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ({{𝐴}} = {{𝐵}} ↔ 𝐴 = 𝐵)) |
10 | 3, 9 | bitrd 268 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (〈𝐴, 𝐴〉 = 〈𝐵, 𝐵〉 ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 384 = wceq 1483 ∈ wcel 1990 Vcvv 3200 {csn 4177 〈cop 4183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |