Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opidg Structured version   Visualization version   GIF version

Theorem opidg 41297
Description: The ordered pair 𝐴, 𝐴 in Kuratowski's representation. Closed form of opid 4421. (Contributed by AV, 18-Sep-2020.) (Revised by AV, 18-Sep-2021.)
Assertion
Ref Expression
opidg (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}})

Proof of Theorem opidg
StepHypRef Expression
1 dfsn2 4190 . . . 4 {𝐴} = {𝐴, 𝐴}
21eqcomi 2631 . . 3 {𝐴, 𝐴} = {𝐴}
32preq2i 4272 . 2 {{𝐴}, {𝐴, 𝐴}} = {{𝐴}, {𝐴}}
4 dfopg 4400 . . 3 ((𝐴𝑉𝐴𝑉) → ⟨𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}})
54anidms 677 . 2 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}, {𝐴, 𝐴}})
6 dfsn2 4190 . . 3 {{𝐴}} = {{𝐴}, {𝐴}}
76a1i 11 . 2 (𝐴𝑉 → {{𝐴}} = {{𝐴}, {𝐴}})
83, 5, 73eqtr4a 2682 1 (𝐴𝑉 → ⟨𝐴, 𝐴⟩ = {{𝐴}})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1483  wcel 1990  {csn 4177  {cpr 4179  cop 4183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator