| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elprneb | Structured version Visualization version GIF version | ||
| Description: An element of a proper unordered pair is the first element iff it is not the second element. (Contributed by AV, 18-Jun-2020.) |
| Ref | Expression |
|---|---|
| elprneb | ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐵 ≠ 𝐶) → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpri 4197 | . . 3 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) | |
| 2 | neeq1 2856 | . . . . . 6 ⊢ (𝐵 = 𝐴 → (𝐵 ≠ 𝐶 ↔ 𝐴 ≠ 𝐶)) | |
| 3 | 2 | eqcoms 2630 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐵 ≠ 𝐶 ↔ 𝐴 ≠ 𝐶)) |
| 4 | pm5.1 902 | . . . . . 6 ⊢ ((𝐴 = 𝐵 ∧ 𝐴 ≠ 𝐶) → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶)) | |
| 5 | 4 | ex 450 | . . . . 5 ⊢ (𝐴 = 𝐵 → (𝐴 ≠ 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶))) |
| 6 | 3, 5 | sylbid 230 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐵 ≠ 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶))) |
| 7 | neeq2 2857 | . . . . 5 ⊢ (𝐴 = 𝐶 → (𝐵 ≠ 𝐴 ↔ 𝐵 ≠ 𝐶)) | |
| 8 | nesym 2850 | . . . . . . . 8 ⊢ (𝐵 ≠ 𝐴 ↔ ¬ 𝐴 = 𝐵) | |
| 9 | pm5.1 902 | . . . . . . . 8 ⊢ ((𝐴 = 𝐶 ∧ ¬ 𝐴 = 𝐵) → (𝐴 = 𝐶 ↔ ¬ 𝐴 = 𝐵)) | |
| 10 | 8, 9 | sylan2b 492 | . . . . . . 7 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 ≠ 𝐴) → (𝐴 = 𝐶 ↔ ¬ 𝐴 = 𝐵)) |
| 11 | 10 | necon2abid 2836 | . . . . . 6 ⊢ ((𝐴 = 𝐶 ∧ 𝐵 ≠ 𝐴) → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶)) |
| 12 | 11 | ex 450 | . . . . 5 ⊢ (𝐴 = 𝐶 → (𝐵 ≠ 𝐴 → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶))) |
| 13 | 7, 12 | sylbird 250 | . . . 4 ⊢ (𝐴 = 𝐶 → (𝐵 ≠ 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶))) |
| 14 | 6, 13 | jaoi 394 | . . 3 ⊢ ((𝐴 = 𝐵 ∨ 𝐴 = 𝐶) → (𝐵 ≠ 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶))) |
| 15 | 1, 14 | syl 17 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐵 ≠ 𝐶 → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶))) |
| 16 | 15 | imp 445 | 1 ⊢ ((𝐴 ∈ {𝐵, 𝐶} ∧ 𝐵 ≠ 𝐶) → (𝐴 = 𝐵 ↔ 𝐴 ≠ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∨ wo 383 ∧ wa 384 = wceq 1483 ∈ wcel 1990 ≠ wne 2794 {cpr 4179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-v 3202 df-un 3579 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: dfodd5 41572 |
| Copyright terms: Public domain | W3C validator |